Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Thiostrepton tryptophan methyltransferase expands the chemistry of radical SAM enzymes

Abstract

Methylation is among the most widespread chemical modifications encountered in biomolecules and has a pivotal role in many major biological processes. In the biosynthetic pathway of the antibiotic thiostrepton A, we identified what is to our knowledge the first tryptophan methyltransferase. We show that it uses unprecedented chemistry to methylate inactivated sp2-hybridized carbon atoms, despite being predicted to be a radical SAM enzyme.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biosynthesis of thiostrepton A.
Figure 2: Analysis of the products formed by TsrM during reaction.
Figure 3: Activity and proposed mechanism for TsrM.

Similar content being viewed by others

References

  1. Walsh, C.T., Acker, M.G. & Bowers, A.A. J. Biol. Chem. 285, 27525–27531 (2010).

    Article  CAS  Google Scholar 

  2. Nicolaou, K.C. et al. J. Am. Chem. Soc. 127, 15042–15044 (2005).

    Article  CAS  Google Scholar 

  3. Tarr, S.J., Nisbet, R.E. & Howe, C.J. Mol. Biochem. Parasitol. 179, 37–41 (2011).

    Article  CAS  Google Scholar 

  4. Hegde, N.S., Sanders, D.A., Rodriguez, R. & Balasubramanian, S. Nat. Chem. 3, 725–731 (2011).

    Article  CAS  Google Scholar 

  5. Kwok, J.M. et al. Mol. Cancer Res. 8, 24–34 (2010).

    Article  CAS  Google Scholar 

  6. Kelly, W.L., Pan, L. & Li, C. J. Am. Chem. Soc. 131, 4327–4334 (2009).

    Article  CAS  Google Scholar 

  7. Zhou, P. et al. J. Am. Chem. Soc. 111, 7274–7276 (1989).

    Article  CAS  Google Scholar 

  8. Frenzel, T., Zhou, P. & Floss, H.G. Arch. Biochem. Biophys. 278, 35–40 (1990).

    Article  CAS  Google Scholar 

  9. Frey, P.A., Hegeman, A.D. & Ruzicka, F.J. Crit. Rev. Biochem. Mol. Biol. 43, 63–88 (2008).

    Article  CAS  Google Scholar 

  10. Grove, T.L. et al. Science 332, 604–607 (2011).

    Article  CAS  Google Scholar 

  11. Benjdia, A. et al. J. Biol. Chem. 283, 17815–17826 (2008).

    Article  CAS  Google Scholar 

  12. Benjdia, A. et al. FEBS J. 277, 1906–1920 (2010).

    Article  CAS  Google Scholar 

  13. Benjdia, A., Leprince, J., Sandstrom, C., Vaudry, H. & Berteau, O. J. Am. Chem. Soc. 131, 8348–8349 (2009).

    Article  CAS  Google Scholar 

  14. Werner, W.J. et al. Biochemistry 50, 8986–8988 (2011).

    Article  CAS  Google Scholar 

  15. Yan, F. et al. J. Am. Chem. Soc. 132, 3953–3964 (2010).

    Article  CAS  Google Scholar 

  16. Matthews, R.G., Koutmos, M. & Datta, S. Curr. Opin. Struct. Biol. 18, 658–666 (2008).

    Article  CAS  Google Scholar 

  17. Zhang, Q., van der Donk, W.A. & Liu, W. Acc. Chem. Res. 45, 555–564 (2012).

    Article  Google Scholar 

  18. Moore, B.N. & Julian, R.R. Phys. Chem. Chem. Phys. 14, 3148–3154 (2012).

    Article  CAS  Google Scholar 

  19. Mosimann, H. & Krautler, B. Angew. Chem. Int. Edn Engl. 39, 393–395 (2000).

    Article  CAS  Google Scholar 

  20. Menon, S. & Ragsdale, S.W. Biochemistry 37, 5689–5698 (1998).

    Article  CAS  Google Scholar 

  21. Houck, D.R., Kobayashi, K., Williamson, J.M. & Floss, H.G. J. Am. Chem. Soc. 108, 5365–5366 (1986).

    Article  CAS  Google Scholar 

  22. Gloux, K. et al. Proc. Natl. Acad. Sci. USA 108 (suppl. 1), 4539–4546 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Ulmer for critical reading of this manuscript. MS experiments were performed at Plateforme d'Analyse Protéomique de Paris Sud-Ouest. This work was supported by grants from the French National Research Agency to S.P.

Author information

Authors and Affiliations

Authors

Contributions

The research was conceived by S.P., A.B. and O.B. S.P., A.B., A.G., C.S. and O.B. performed experiments. S.P., A.B., A.G., P.L. and O.B. analyzed the data. S.P., A.B. and O.B. wrote the manuscript.

Corresponding author

Correspondence to Olivier Berteau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 4045 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierre, S., Guillot, A., Benjdia, A. et al. Thiostrepton tryptophan methyltransferase expands the chemistry of radical SAM enzymes. Nat Chem Biol 8, 957–959 (2012). https://doi.org/10.1038/nchembio.1091

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1091

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing