Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quality control of disulfide bond formation in pilus subunits by the chaperone FimC

Abstract

Type 1 pili from uropathogenic Escherichia coli are filamentous, noncovalent protein complexes mediating bacterial adhesion to the host tissue. All structural pilus subunits are homologous proteins sharing an invariant disulfide bridge. Here we show that disulfide bond formation in the unfolded subunits, catalyzed by the periplasmic oxidoreductase DsbA, is required for subunit recognition by the assembly chaperone FimC and for FimC-catalyzed subunit folding. FimC thus guarantees quantitative disulfide bond formation in each of the up to 3,000 subunits of the pilus. The X-ray structure of the complex between FimC and the main pilus subunit FimA and the kinetics of FimC-catalyzed FimA folding indicate that FimC accelerates folding of pilus subunits by lowering their topological complexity. The kinetic data, together with the measured in vivo concentrations of DsbA and FimC, predict an in vivo half-life of 2 s for oxidative folding of FimA in the periplasm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of type 1 pilus assembly by the chaperone-usher pathway.
Figure 2: Complex formation between FimAUox and FimC at pH 7.0 and 25 °C.
Figure 3: Stopped-flow fluorescence kinetics of FimAUred oxidation by DsbAox and subsequent FimAUox folding and complex formation with FimC (pH 7.0, 25 °C).
Figure 4: Kinetics of FimC-catalyzed folding of FimAUox at pH 7.0, 25 °C, showing that binding of FimAUox is the rate-limiting step in the formation of the native FimC-FimA complex.
Figure 5: Mechanism and in vivo kinetics of DsbA- and FimC-catalyzed folding of FimA.
Figure 6: 2.5-Å X-ray structure of the FimC–FimAt complex.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Choudhury, D. et al. X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285, 1061–1066 (1999).

    Article  CAS  Google Scholar 

  2. Hahn, E. et al. Exploring the 3D molecular architecture of Escherichia coli type 1 pili. J. Mol. Biol. 323, 845–857 (2002).

    Article  CAS  Google Scholar 

  3. Jones, C.H. et al. FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae. Proc. Natl. Acad. Sci. USA 92, 2081–2085 (1995).

    Article  CAS  Google Scholar 

  4. Le Trong, I. et al. Donor strand exchange and conformational changes during E. coli fimbrial formation. J. Struct. Biol. 172, 380–388 (2010).

    Article  CAS  Google Scholar 

  5. Le Trong, I. et al. Structural basis for mechanical force regulation of the adhesin FimH via finger trap-like β-sheet twisting. Cell 141, 645–655 (2010).

    Article  CAS  Google Scholar 

  6. Sauer, F.G. et al. Structural basis of chaperone function and pilus biogenesis. Science 285, 1058–1061 (1999).

    Article  CAS  Google Scholar 

  7. Sauer, F.G., Pinkner, J.S., Waksman, G. & Hultgren, S.J. Chaperone priming of pilus subunits facilitates a topological transition that drives fiber formation. Cell 111, 543–551 (2002).

    Article  CAS  Google Scholar 

  8. Hung, D.L., Knight, S.D., Woods, R.M., Pinkner, J.S. & Hultgren, S.J. Molecular basis of two subfamilies of immunoglobulin-like chaperones. EMBO J. 15, 3792–3805 (1996).

    Article  CAS  Google Scholar 

  9. Jones, C.H. et al. FimC is a periplasmic PapD-like chaperone that directs assembly of type 1 pili in bacteria. Proc. Natl. Acad. Sci. USA 90, 8397–8401 (1993).

    Article  CAS  Google Scholar 

  10. Nishiyama, M., Ishikawa, T., Rechsteiner, H. & Glockshuber, R. Reconstitution of pilus assembly reveals a bacterial outer membrane catalyst. Science 320, 376–379 (2008).

    Article  CAS  Google Scholar 

  11. Phan, G. et al. Crystal structure of the FimD usher bound to its cognate FimC-FimH substrate. Nature 474, 49–53 (2011).

    Article  CAS  Google Scholar 

  12. Saulino, E.T., Thanassi, D.G., Pinkner, J.S. & Hultgren, S.J. Ramifications of kinetic partitioning on usher-mediated pilus biogenesis. EMBO J. 17, 2177–2185 (1998).

    Article  CAS  Google Scholar 

  13. Vetsch, M. et al. Pilus chaperones represent a new type of protein-folding catalyst. Nature 431, 329–333 (2004).

    Article  CAS  Google Scholar 

  14. Vetsch, M. et al. Mechanism of fibre assembly through the chaperone-usher pathway. EMBO Rep. 7, 734–738 (2006).

    Article  CAS  Google Scholar 

  15. Remaut, H. et al. Donor-strand exchange in chaperone-assisted pilus assembly proceeds through a concerted beta strand displacement mechanism. Mol. Cell 22, 831–842 (2006).

    Article  CAS  Google Scholar 

  16. Zavialov, A.V. et al. Structure and biogenesis of the capsular F1 antigen from Yersinia pestis: preserved folding energy drives fiber formation. Cell 113, 587–596 (2003).

    Article  CAS  Google Scholar 

  17. Dodd, D.C. & Eisenstein, B.I. Kinetic analysis of the synthesis and assembly of type 1 fimbriae of Escherichia coli. J. Bacteriol. 160, 227–232 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Jacob-Dubuisson, F., Striker, R. & Hultgren, S.J. Chaperone-assisted self-assembly of pili independent of cellular energy. J. Biol. Chem. 269, 12447–12455 (1994).

    CAS  PubMed  Google Scholar 

  19. Heras, B. et al. DSB proteins and bacterial pathogenicity. Nat. Rev. Microbiol. 7, 215–225 (2009).

    Article  CAS  Google Scholar 

  20. Hiniker, A. & Bardwell, J.C. In vivo substrate specificity of periplasmic disulfide oxidoreductases. J. Biol. Chem. 279, 12967–12973 (2004).

    Article  CAS  Google Scholar 

  21. Bardwell, J.C., McGovern, K. & Beckwith, J. Identification of a protein required for disulfide bond formation in vivo. Cell 67, 581–589 (1991).

    Article  CAS  Google Scholar 

  22. Bringer, M.A., Rolhion, N., Glasser, A.L. & Darfeuille-Michaud, A. The oxidoreductase DsbA plays a key role in the ability of the Crohn′s disease-associated adherent-invasive Escherichia coli strain LF82 to resist macrophage killing. J. Bacteriol. 189, 4860–4871 (2007).

    Article  CAS  Google Scholar 

  23. Jacob-Dubuisson, F. et al. PapD chaperone function in pilus biogenesis depends on oxidant and chaperone-like activities of DsbA. Proc. Natl. Acad. Sci. USA 91, 11552–11556 (1994).

    Article  CAS  Google Scholar 

  24. Totsika, M., Heras, B., Wurpel, D.J. & Schembri, M.A. Characterization of two homologous disulfide bond systems involved in virulence factor biogenesis in uropathogenic Escherichia coli CFT073. J. Bacteriol. 191, 3901–3908 (2009).

    Article  CAS  Google Scholar 

  25. Nishiyama, M. et al. Structural basis of chaperone-subunit complex recognition by the type 1 pilus assembly platform FimD. EMBO J. 24, 2075–2086 (2005).

    Article  CAS  Google Scholar 

  26. Eidam, O., Dworkowski, F.S., Glockshuber, R., Grutter, M.G. & Capitani, G. Crystal structure of the ternary FimC-FimFt-FimDN complex indicates conserved pilus chaperone-subunit complex recognition by the usher FimD. FEBS Lett. 582, 651–655 (2008).

    Article  CAS  Google Scholar 

  27. Pellecchia, M., Sebbel, P., Hermanns, U., Wuthrich, K. & Glockshuber, R. Pilus chaperone FimC-adhesin FimH interactions mapped by TROSY-NMR. Nat. Struct. Biol. 6, 336–339 (1999).

    Article  CAS  Google Scholar 

  28. Puorger, C., Vetsch, M., Wider, G. & Glockshuber, R. Structure, folding and stability of FimA, the main structural subunit of type 1 pili from uropathogenic Escherichia coli strains. J. Mol. Biol. 412, 520–535 (2011).

    Article  CAS  Google Scholar 

  29. Wunderlich, M. & Glockshuber, R. Redox properties of protein disulfide isomerase (DsbA) from Escherichia coli. Protein Sci. 2, 717–726 (1993).

    Article  CAS  Google Scholar 

  30. Wunderlich, M., Otto, A., Seckler, R. & Glockshuber, R. Bacterial protein disulfide isomerase: efficient catalysis of oxidative protein folding at acidic pH. Biochemistry 32, 12251–12256 (1993).

    Article  CAS  Google Scholar 

  31. Hennecke, J., Sillen, A., Huber-Wunderlich, M., Engelborghs, Y. & Glockshuber, R. Quenching of tryptophan fluorescence by the active-site disulfide bridge in the DsbA protein from Escherichia coli. Biochemistry 36, 6391–6400 (1997).

    Article  CAS  Google Scholar 

  32. Schmid, F.X. Mechanism of folding of ribonuclease A. Slow refolding is a sequential reaction via structural intermediates. Biochemistry 22, 4690–4696 (1983).

    Article  CAS  Google Scholar 

  33. Reimer, U. et al. Side-chain effects on peptidyl-prolyl cis/trans isomerisation. J. Mol. Biol. 279, 449–460 (1998).

    Article  CAS  Google Scholar 

  34. Balbach, J. & Schmid, F.X. Prolyl isomerization and its catalysis in protein folding in Mechanisms of Protein Folding: Frontiers in Molecular Biology 2nd edn. (ed. Pain, R.H.) 212–249 (Oxford University Press, 2000).

  35. Kobayashi, T. & Ito, K. Respiratory chain strongly oxidizes the CXXC motif of DsbB in the Escherichia coli disulfide bond formation pathway. EMBO J. 18, 1192–1198 (1999).

    Article  CAS  Google Scholar 

  36. Barnhart, M.M. et al. PapD-like chaperones provide the missing information for folding of pilin proteins. Proc. Natl. Acad. Sci. USA 97, 7709–7714 (2000).

    Article  CAS  Google Scholar 

  37. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  Google Scholar 

  38. Diederichs, K. Structural superposition of proteins with unknown alignment and detection of topological similarity using a six-dimensional search algorithm. Proteins 23, 187–195 (1995).

    Article  CAS  Google Scholar 

  39. McDonald, I.K. & Thornton, J.M. Satisfying hydrogen bonding potential in proteins. J. Mol. Biol. 238, 777–793 (1994).

    Article  CAS  Google Scholar 

  40. Kuehn, M.J. et al. Structural basis of pilus subunit recognition by the PapD chaperone. Science 262, 1234–1241 (1993).

    Article  CAS  Google Scholar 

  41. Kelley, L.A. & Sutcliffe, M.J. OLDERADO: on-line database of ensemble representatives and domains. On line database of ensemble representatives and domains. Protein Sci. 6, 2628–2630 (1997).

    Article  CAS  Google Scholar 

  42. Kabsch, W. A solution for the best rotation to relate two sets of vectors. Acta Crystallogr. A 32, 922–923 (1976).

    Article  Google Scholar 

  43. Łasica, A.M. & Jagusztyn-Krynicka, E.K. The role of Dsb proteins of Gram-negative bacteria in the process of pathogenesis. FEMS Microbiol. Rev. 31, 626–636 (2007).

    Article  Google Scholar 

  44. Yu, J. & Kroll, J.S. DsbA: a protein-folding catalyst contributing to bacterial virulence. Microbes Infect. 1, 1221–1228 (1999).

    Article  CAS  Google Scholar 

  45. Hiniker, A., Collet, J.F. & Bardwell, J.C. Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC. J. Biol. Chem. 280, 33785–33791 (2005).

    Article  CAS  Google Scholar 

  46. Missiakas, D., Georgopoulos, C. & Raina, S. The Escherichia coli dsbC (xprA) gene encodes a periplasmic protein involved in disulfide bond formation. EMBO J. 13, 2013–2020 (1994).

    Article  CAS  Google Scholar 

  47. Thomas, W.E., Trintchina, E., Forero, M., Vogel, V. & Sokurenko, E.V. Bacterial adhesion to target cells enhanced by shear force. Cell 109, 913–923 (2002).

    Article  CAS  Google Scholar 

  48. Bann, J.G., Pinkner, J.S., Frieden, C. & Hultgren, S.J. Catalysis of protein folding by chaperones in pathogenic bacteria. Proc. Natl. Acad. Sci. USA 101, 17389–17393 (2004).

    Article  CAS  Google Scholar 

  49. Capitani, G., Eidam, O., Glockshuber, R. & Grütter, M.G. Structural and functional insights into the assembly of type 1 pili from. Escherichia coli. Microbes Infect. 8, 2284–2290 (2006).

    Article  CAS  Google Scholar 

  50. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation (grants 310030B-138657 and 31003A-122095 to R.G.) and the Swiss Federal Institute of Technology Zürich within the framework of the Swiss National Center for Competence in Research Structural Biology Program. The PhD position of M.A.S. was supported by a grant from the Research Committee of the Paul Scherrer Institute (FK-05.08.1) to G.C.

Author information

Authors and Affiliations

Authors

Contributions

The overall study was conceived and designed by M.D.C. and R.G. The biochemical experiments were performed by M.D.C. with contributions from C.P., M.A.S., O.E. and M.G.G., and G.C. contributed to the crystallographic structure determination, refinement and interpretation. M.D.C. and R.G. wrote the manuscript with the contribution of C.P., M.A.S. and G.C.

Corresponding author

Correspondence to Rudi Glockshuber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 2069 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crespo, M., Puorger, C., Schärer, M. et al. Quality control of disulfide bond formation in pilus subunits by the chaperone FimC. Nat Chem Biol 8, 707–713 (2012). https://doi.org/10.1038/nchembio.1019

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1019

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing