Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cis-dicarbonyl binding at cobalt and iron porphyrins with saddle-shape conformation

Abstract

Diatomic molecules attached to complexed iron or cobalt centres are important in many biological processes. In natural systems, metallotetrapyrrole units carry respiratory gases or provide sensing and catalytic functions. Conceiving synthetic model systems strongly helps to determine the pertinent chemical foundations for such processes, with recent work highlighting the importance of the prosthetic groups' conformational flexibility as an intricate variable affecting their functional properties. Here, we present simple model systems to investigate, at the single molecule level, the interaction of carbon monoxide with saddle-shaped iron– and cobalt–porphyrin conformers, which have been stabilized as two-dimensional arrays on well-defined surfaces. Using scanning tunnelling microscopy we identified a novel bonding scheme expressed in tilted monocarbonyl and cis-dicarbonyl configurations at the functional metal-macrocycle unit. Modelling with density functional theory revealed that the weakly bonded diatomic carbonyl adduct can effectively bridge specific pyrrole groups with the metal atom as a result of the pronounced saddle-shape conformation of the porphyrin cage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Saddle-shape conformation of CoTPP on Ag(111) and response towards CO exposure.
Figure 2: Transfer of carbonyl ligands by molecular manipulation.
Figure 3: Comparison of experimental data and theoretical description.
Figure 4: Electronic properties of the bridged carbonyl complexes.

Similar content being viewed by others

References

  1. Spiro, T. G. & Kozlowski, P. M. Is the CO Adduct of myoglobin bent, and does it matter? Acc. Chem. Res. 34, 137–144 (2001).

    Article  CAS  Google Scholar 

  2. Collman, J. P., Boulatov, R., Sunderland, C. J. & Fu., L. Functional analogues of cytochrome c oxidase, myoglobin, and hemoglobin. Chem. Rev. 104, 561–588 (2004).

    Article  CAS  Google Scholar 

  3. Ghosh, A. Metalloporphyrin–NO bonding: building bridges with organometallic chemistry. Acc. Chem. Res. 38, 943–954 (2005).

    Article  CAS  Google Scholar 

  4. Hoard, J. L. Stereochemistry of hemes and other metalloporphyrins. Science 174, 1295–1302 (1971).

    Article  CAS  Google Scholar 

  5. Kratky, C. et al. The saddle conformation of hydroporphinoid nickel(II) complexes: structure, origin, and stereochemical consequences. Helv. Chim. Act. 68, 1312–1327 (1985).

    Article  CAS  Google Scholar 

  6. Barkigia, K. M., Chantranupong, L., Smith, K. M. & Fajer, J. Structural and theoretical models of photosynthetic chromophores. Implications for redox, light absorption properties and vectorial electron flow. J. Am. Chem. Soc. 110, 7566–7567 (1988).

    Article  CAS  Google Scholar 

  7. Barkigia, K. M. et al. Nonplanar porphyrins. X-ray structures of (2,3,7,8,12,13,17,18-octaethyl- and -octamethyl-5,10,15,20-tetraphenyl-porphinato)zinc(II). J. Am. Chem. Soc. 112, 8851–8857 (1990).

    Article  CAS  Google Scholar 

  8. Sparks, L. D. et al. Metal dependence of the nonplanar distortion of octaalkyltetraphenylporphyrins. J. Am. Chem. Soc. 115, 581–592 (1993).

    Article  CAS  Google Scholar 

  9. Shelnutt, J. A. et al. Nonplanar porphyrins and their significance in proteins. Chem. Soc. Rev. 27, 31–41 (1998).

    Article  CAS  Google Scholar 

  10. Senge, M. O. Exercises in molecular gymnastics—bending, stretching and twisting. Chem. Commun. 243–256 (2006).

  11. Weber-Bargioni, A. et al. Visualizing the frontier orbitals of a conformationally adapted metalloporphyrin. ChemPhysChem 9, 89–94 (2008).

    Article  CAS  Google Scholar 

  12. Auwärter, W. et al. Site-specific electronic and geometric interface structure of Co-tetraphenyl-porphyrin layers on Ag(111). Phys. Rev. B 81, 245403 (2010).

    Article  Google Scholar 

  13. Springer, B. A., Sligar, S. G., Olson, J. S. & Phillips, G. N. Jr. Mechanisms of ligand recognition in myoglobin. Chem. Rev. 94, 699–714 (1994).

    Article  CAS  Google Scholar 

  14. Aono, S. Biochemical and biophysical properties of the CO-sensing transcriptional activator CooA. Acc. Chem. Res. 36, 825–831 (2003).

    Article  CAS  Google Scholar 

  15. Kim, H. P., Ryter, S. W. & Choi, A. M. K. CO as a cellular signaling molecule. Annu. Rev. Pharmacol. Toxicol. 46, 411–449 (2006).

    Article  CAS  Google Scholar 

  16. Kachalova, G. S., Popov, A. N. & Bartunik, H. D. A steric mechanism for inhibition of CO binding to heme proteins. Science 284, 473–476 (1999).

    Article  CAS  Google Scholar 

  17. Sigfridsson, E. & Ryde, U. On the significance of hydrogen bonds for the discrimination between CO and O2 by myoglobin. J. Biol. Inorg. Chem. 4, 99–110 (1999).

    Article  CAS  Google Scholar 

  18. Leu, B. M. et al. Quantitative vibrational dynamics of iron in carbonyl porphyrins. Biophys. J. 92, 3764–3783 (2007).

    Article  CAS  Google Scholar 

  19. Madura, P. & Scheidt, W. R. Stereochemistry of low-spin cobalt porphyrins. 8. α,β,γ,δ-Tetraphenylporphinatocobalt(II). Inorg. Chem. 15, 3182–3184 (1976).

    Article  CAS  Google Scholar 

  20. Auwärter, W. et al. Controlled metalation of self-assembled porphyrin nanoarrays in two dimensions. ChemPhysChem 8, 250–254 (2007).

    Article  Google Scholar 

  21. Meyer, G., Neu, B. & Rieder, K. H. Controlled lateral manipulaiton of single molecules with the scanning tunneling microscope. Appl. Phys. A 60, 343–345 (1995).

    Article  Google Scholar 

  22. Lee, H. J. & Ho, W. Single-bond formation and characterization with a scanning tunneling microscope. Science 286, 1719–1722 (1999).

    Article  CAS  Google Scholar 

  23. Auwärter, W. et al. Molecular nanoscience and engineering on surfaces. Int. J. Nanotechnol. 5, 1171–1193 (2008).

    Article  Google Scholar 

  24. Brand, H. & Arnold, J. Recent developments in the chemistry of early transition metal porphyrin compounds. Coord. Chem. Rev. 140, 137–168 (1995).

    Article  CAS  Google Scholar 

  25. Smith, P. D., James, B. R. & Dolphin, D. H. Structural aspects and coordination chemistry of metal porphyrin complexes with emphasis on axial ligand binding to carbon donors and mono- and diatomic nitrogen and oxygen donors. Coord. Chem. Rev. 39, 31–75 (1981).

    Article  CAS  Google Scholar 

  26. Wahl, P. et al. Kondo effect of molecular complexes at surfaces: ligand control of the local spin coupling. Phys. Rev. Lett. 95, 166601 (2005).

    Article  CAS  Google Scholar 

  27. Flechtner, K., Kretschmann, A., Steinrück, H. P. & Gottfried, J. M. NO-induced reversible switching of the electronic interaction between a porphyrin-coordinated cobalt ion and a silver surface. J. Am. Chem. Soc. 129, 12110–12111 (2007).

    Article  CAS  Google Scholar 

  28. Barth, J. V. Fresh perspectives for surface coordination chemistry. Surf. Sci. 603, 1533–1541 (2009).

    Article  CAS  Google Scholar 

  29. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  30. Mercurio, G. et al. Structure and energetics of azobenzene on Ag(111): benchmarking semiempirical dispersion correction approaches. Phys. Rev. Lett. 104, 036102 (2010).

    Article  CAS  Google Scholar 

  31. Vladimirova, M. et al. Substrate-induced supramolecular ordering of functional molecules: theoretical modelling and STM investigation of the PEBA/Ag(111) system. Acta Mater. 52, 1589–1596 (2004).

    Article  CAS  Google Scholar 

  32. Rohlfing, M., Temirov, R. & Tautz, F. S. Adsorption structure and scanning tunneling data of a prototype organic–inorganic interface: PTCDA on Ag(111). Phys. Rev. B 76, 115421 (2007).

    Article  Google Scholar 

  33. Klappenberger, F. et al. Conformational adaptation in supramolecular assembly on surfaces. ChemPhysChem 8, 1782–1786 (2007).

    Article  CAS  Google Scholar 

  34. Franke, K. J. et al. Reducing the molecule–substrate coupling in C60-based nanostructures by molecular interactions. Phys. Rev. Lett. 100, 036807 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council Advanced Grant MolArt (no. 247299), the Deutsche Forschungsgemeinschaft Cluster of Excellence Munich Center for Advanced Photonics, Canadian National Science and Engineering Research Council (NSERC) and Canada Foundation for Innovation (CFI). W.A., A.W.-B. and J.R. thank the Technische Universität München Institute for Advanced Studies, the German Academic Exchange Service and the Deutsche Forschungsgesellschaft for scholarships, respectively. M.–L.B. acknowledges computational time at the Leibniz Rechenzentrum Garching. N.L. thanks Spanish Ministerio de Ciencia e Innovación for financial support (grant no. FIS2009-1271-C04-01).

Author information

Authors and Affiliations

Authors

Contributions

K.S., W.A., A.W.-B. and J.R. performed the STM experiments, and analysed and interpreted the experimental data. The theoretical analysis was provided by M.-L.B. and N.L. J.V.B., W.A. and M.-L.B. conceived the studies and co-wrote the paper with K.S. and N.L.

Corresponding author

Correspondence to Johannes V. Barth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 782 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seufert, K., Bocquet, ML., Auwärter, W. et al. Cis-dicarbonyl binding at cobalt and iron porphyrins with saddle-shape conformation. Nature Chem 3, 114–119 (2011). https://doi.org/10.1038/nchem.956

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.956

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing