Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities

Abstract

Metal–organic frameworks—a class of porous hybrid materials built from metal ions and organic bridges—have recently shown great promise for a wide variety of applications. The large choice of building blocks means that the structures and pore characteristics of the metal–organic frameworks can be tuned relatively easily. However, despite much research, it remains challenging to prepare frameworks specifically tailored for particular applications. Here, we have used computational modelling to design and predictively characterize a metal–organic framework (NU-100) with a particularly high surface area. Subsequent experimental synthesis yielded a material, matching the calculated structure, with a high BET surface area (6,143 m2 g−1). Furthermore, sorption measurements revealed that the material had high storage capacities for hydrogen (164 mg g−1) and carbon dioxide (2,315 mg g−1)—gases of high importance in the contexts of clean energy and climate alteration, respectively—in excellent agreement with predictions from modelling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural features of NU-100.
Figure 2: TGA and PXRD profiles.
Figure 3: Photographic images of NU-10.
Figure 4: Sorption data for the simulated and synthesized NU-100.

Similar content being viewed by others

References

  1. Ferey, G. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191–214 (2008).

    Article  CAS  Google Scholar 

  2. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  Google Scholar 

  3. Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nature Chem. 1, 695–704 (2009).

    Article  CAS  Google Scholar 

  4. Sava, D. F. et al. Exceptional stability and high hydrogen uptake in hydrogen-bonded metal–organic cubes possessing ACO and AST zeolite-like topologies. J. Am. Chem. Soc. 131, 10394–10396 (2009).

    Article  CAS  Google Scholar 

  5. Lin, X. et al. High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization and exposed metal sites. J. Am. Chem. Soc. 131, 2159–2171 (2009).

    Article  CAS  Google Scholar 

  6. Murray, L. J., Dinca, M. & Long, J. R. Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 38, 1294–1314 (2009).

    Article  CAS  Google Scholar 

  7. Kaye, S. S., Dailly, A., Yaghi, O. M. & Long, J. R. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J. Am. Chem. Soc. 129, 14176–14177 (2007).

    Article  CAS  Google Scholar 

  8. Furukawa, H., Miller, M. A. & Yaghi, O. M. Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal–organic frameworks. J. Am. Chem. Soc. 17, 3197–3204 (2007).

    CAS  Google Scholar 

  9. Koh, K., Wong-Foy, A. G. & Matzger, A. J. A porous coordination copolymer with over 5,000 m2/g BET surface area. J. Am. Chem. Soc. 131, 4184–4185 (2009).

    Article  CAS  Google Scholar 

  10. Rosi, N. L. et al. Hydrogen storage in microporous metal–organic frameworks. Science 300, 1127–1129 (2003).

    Article  CAS  Google Scholar 

  11. Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002).

    Article  CAS  Google Scholar 

  12. Li, J.-R., Kuppler, R. J. & Zhou, H.-C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).

    Article  CAS  Google Scholar 

  13. Ma, L., Abney, C. & Lin, W. Enantioselective catalysis with homochiral metal–organic frameworks. Chem. Soc. Rev. 38, 1248–1256 (2009).

    Article  CAS  Google Scholar 

  14. Lee, J. et al. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009).

    Article  CAS  Google Scholar 

  15. Allendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. T. Luminescent metal–organic frameworks. Chem. Soc. Rev. 38, 1330–1352 (2009).

    Article  CAS  Google Scholar 

  16. Min, K. S. & Suh, M. P. Silver(I)-polynitrile network solids for anion exchange: anion-induced transformation of supramolecular structure in the crystalline state. J. Am. Chem. Soc. 122, 6834–6840 (2000).

    Article  CAS  Google Scholar 

  17. An, J., Geib, S. J. & Rosi, N. L. Cation-triggered drug release from a porous zinc-adeninate metal–organic framework. J. Am. Chem. Soc. 131, 8376–8377 (2009).

    Article  CAS  Google Scholar 

  18. Horcajada, P. et al. Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 45, 5974–5978 (2006).

    Article  CAS  Google Scholar 

  19. Düren, T., Bae, Y.-S. & Snurr, R. Q. Using molecular simulation to characterise metal–organic frameworks for adsorption applications. Chem. Soc. Rev. 38, 1237–1247 (2009).

    Article  Google Scholar 

  20. Han, S. S., Mendoza-Cortes, J. L. & Goddard III, W. A. Recent advances on simulation and theory of hydrogen storage in metal–organic frameworks and covalent organic frameworks. Chem. Soc. Rev. 38, 1460–1476 (2009).

    Article  CAS  Google Scholar 

  21. Walton, K. S. & Snurr, R. Q. Applicability of the BET method for determining surface areas of microporous metal–organic frameworks. J. Am. Chem. Soc. 129, 8552–8556 (2007).

    Article  CAS  Google Scholar 

  22. Wang, X.-S. et al. A large-surface-area boracite-network-topology porous MOF constructed from a conjugated ligand exhibiting a high hydrogen uptake capacity. Inorg. Chem. 48, 7519–7521 (2009).

    Article  CAS  Google Scholar 

  23. Nouar, F. et al. Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metal–organic frameworks. J. Am. Chem. Soc. 130, 1833–1835 (2008).

    Article  CAS  Google Scholar 

  24. Yan, Y. et al. Exceptionally high H2 storage by a metal–organic polyhedral framework. Chem. Commun. 1025–1027 (2009).

  25. Wang, X.-S. et al. Enhancing H2 uptake by ‘close-packing’ alignment of open copper sites in metal–organic frameworks. Angew. Chem. Int. Ed. 47, 7263–7266 (2008).

    Article  CAS  Google Scholar 

  26. Hu, Y. et al. A new MOF-505 analog exhibiting high acetylene storage. Chem. Commun. 7551–7553 (2009).

  27. Frost, H. & Snurr, R. Q. Design requirements for metal–organic frameworks as hydrogen storage materials. J. Phys. Chem. C 111, 18794–18803 (2007).

    Article  CAS  Google Scholar 

  28. Yuan, D., Zhao, D., Sun, D. & Zhou, H.-C. An isoreticular series of metal–organic frameworks with dendritic hexacarboxylate jigands and exceptionally high gas-uptake capacity. Angew. Chem. Int. Ed. doi:10.1002/anie.201001009.

  29. Materials Studio v 5.0. Accelrys Software Inc., San Diego, CA 92121, USA.

  30. Rappe, A. K., Colwell, K. S., Goddard III, W. A. & Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).

    Article  CAS  Google Scholar 

  31. Gelb, L. D. & Gubbins, K. E. Pore size distributions in porous glasses: a computer simulation study. Langmuir 15, 305–308 (1998).

    Article  Google Scholar 

  32. Nelson, A. P., Farha, O. K., Mulfort, K. L. & Hupp, J. T. Supercritical processing as a route to high internal surface areas and permanent microporosity in metal–organic framework materials. J. Am. Chem. Soc. 131, 458–460 (2008).

    Article  Google Scholar 

  33. Furukawa, H. et al. Ultra-high porosity in metal–organic frameworks. Science 329, 424–428 (2010).

    Article  CAS  Google Scholar 

  34. Latroche, M. et al. Hydrogen storage in the giant-pore metal–organic frameworks MIL-100 and MIL-101 Angew. Chem. Int. Ed. 45, 8227–8231 (2006).

    Article  CAS  Google Scholar 

  35. Yong, Y. et al. Metal–organic polyhedral frameworks: high H2 adsorption capacities and neutron powder diffraction studies. J. Am. Chem. Soc. 132, 4092–4094 (2010).

    Article  Google Scholar 

  36. http://webbook.nist.gov/chemistry/fluid/.

  37. http://www.hydrogen.energy.gov/annual_progress09.html.

  38. Liu, J. et al. Adsorption and diffusion of hydrogen in a new metal–organic framework material: [Zn(bdc)(ted)0.5]. J. Phys. Chem. C 112, 2911–2917 (2008).

    Article  CAS  Google Scholar 

  39. Yazaydın, A. Ö. et al. Screening of metal–organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. J. Am. Chem. Soc. 131, 18198–18199 (2009).

    Article  Google Scholar 

  40. Millward, A. R. & Yaghi, O. M. Metal–organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 127, 17998–17999 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the Defense Threat Reduction Agency (HDTRA1-08-C-005), the Department of Energy (DE-FG36-08GO18137 and DE-FG02-08ER15967), the National Science Foundation (EEC-0647560) and Argonne National Lab (supercomputing time on Carbon cluster).

Author information

Authors and Affiliations

Authors

Contributions

O.K.F. and A.Ö.Y. designed the research. A.Ö.Y. performed the simulations with advice and assistance from R.Q.S. O.K.F. and I.E. synthesized LH6 with general synthesis advice from S.T.N. O.K.F. synthesized NU-100. O.K.F. and B.G.H. performed the physical measurements. C.D.M. was responsible for solving the crystal structure with assistance from M.G.K. J.T.H. contributed to the development of the general MOF-activation methodology and assisted with data interpretation. All authors discussed the results, contributed to writing the manuscript and commented on it.

Corresponding authors

Correspondence to Randall Q. Snurr or Joseph T. Hupp.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1580 kb)

Supplementary information

Crystallographic data for MOF NU-100 (CIF 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farha, O., Özgür Yazaydın, A., Eryazici, I. et al. De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chem 2, 944–948 (2010). https://doi.org/10.1038/nchem.834

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.834

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing