Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A primary hydrogen–deuterium isotope effect observed at the single-molecule level

Abstract

The covalent chemistry of reactants tethered within a single protein pore can be monitored by observing the time-dependence of ionic current flow through the pore, which responds to bond making and breaking in individual reactant molecules. Here we use this ‘nanoreactor’ approach to examine the reaction of a quinone with a thiol to form a substituted hydroquinone by reductive 1,4-Michael addition. Remarkably, a primary hydrogen–deuterium isotope effect is readily detected at the single-molecule level during prototropic rearrangement of an initial adduct. The observation of individual reaction intermediates allows the measurement of an isotope effect whether or not the step involved is rate limiting, which would not be the case in an ensemble measurement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-molecule quinone chemistry.
Figure 2: Single-molecule reactions of UQ (1) and UQ(D) (1) with the thiol of PSH at pH 6.5.
Figure 3: Single-molecule reactions of UQ (1) and UQ(D) (1) with the thiol of PSH at pH 4.5.
Figure 4: Reaction of UQ (1) and UQ(D) (1) with glutathione in bulk solution.
Figure 5: QuB simulations of the reaction of UQ (1) and UQ(D) (1) with the thiol of PSH.

Similar content being viewed by others

References

  1. Moffitt, J. R., Chemla, Y. R., Smith, S. B. & Bustamante, C. Recent advances in optical tweezers. Annu. Rev. Biochem. 77, 205–228 (2008).

    Article  CAS  Google Scholar 

  2. Bustamante, C. In singulo biochemistry: when less is more. Ann. Rev. Biochem. 77, 45–50 (2008).

    Article  CAS  Google Scholar 

  3. Benkovic, S. J., Hammes, G. G. & Hammes-Schiffer, S. Free-energy landscape of enzyme catalysis. Biochemistry 47, 3317–3321 (2008).

    Article  CAS  Google Scholar 

  4. Liang, J. & Fernandez, J. M. Mechanochemistry: One bond at a time. ACS Nano 3, 1628–1645 (2009).

    Article  CAS  Google Scholar 

  5. Puchner, E. M., Franzen, G., Gautel, M. & Gaub, H. E. Comparing proteins by their unfolding pattern. Biophys. J. 95, 426–434 (2008).

    Article  CAS  Google Scholar 

  6. Zhuang, X. Single-molecule RNA science. Annu. Rev. Biophys. Biomol. 34, 399–414 (2005).

    Article  CAS  Google Scholar 

  7. Comellas-Aragones, M. et al. A virus-based single-enzyme nanoreactor. Nature Nanotechnol. 2, 635–639 (2007).

    Article  CAS  Google Scholar 

  8. Liu, S., Abbondanzieri, E. A., Rausch, J. W., Le Grice, S. F. & Zhuang, X. Slide into action: dynamic shuttling of HIV reverse transcriptase on nucleic acid substrates. Science 322, 1092–1097 (2008).

    Article  CAS  Google Scholar 

  9. Yanagida, T., Iwaki, M. & Ishii, Y. Single molecule measurements and molecular motors. Phil. Trans. R. Soc. B 363, 2123–2134 (2008).

    Article  CAS  Google Scholar 

  10. Park, H., Toprak, E. & Selvin, P. R. Single-molecule fluorescence to study molecular motors. Q. Rev. Biophys. 40, 87–111 (2007).

    Article  CAS  Google Scholar 

  11. Brandenburg, B. & Zhuang, X. Virus trafficking - learning from single-virus tracking. Nat. Rev. Microbiol. 5, 197–208 (2007).

    Article  CAS  Google Scholar 

  12. Xie, X. S., Choi, P. J., Li, G. W., Lee, N. K. & Lia, G. Single-molecule approach to molecular biology in living bacterial cells. Ann. Rev. Biophys. 37, 417–444 (2008).

    Article  CAS  Google Scholar 

  13. Ho, W. Single-molecule chemistry. J. Chem. Phys. 117, 11033–11061 (2002).

    Article  CAS  Google Scholar 

  14. Rao, B. V., Kwon, K. Y., Liu, A. & Bartels, L. Measurement of a linear free energy relationship one molecule at a time. Proc. Natl Acad. Sci. USA 101, 17920–17923 (2004).

    Article  CAS  Google Scholar 

  15. Maksymovych, P., Sorescu, D. C., Jordan, K. D. & Yates, J. T., Jr. Collective reactivity of molecular chains self-assembled on a surface. Science 322, 1664–1667 (2008).

    Article  CAS  Google Scholar 

  16. Grandbois, M., Beyer, M., Rief, M., Clausen-Schaumann, H. & Gaub, H. E. How strong is a covalent bond? Science 283, 1727–1730 (1999).

    Article  CAS  Google Scholar 

  17. Garcia-Manyes, S., Liang, J., Szoszkiewicz, R., Kuo, T. L. & Fernández, J. M. Force-activated reactivity switch in a bimolecular chemical reaction. Nature Chem. 1, 236–242 (2009).

    Article  CAS  Google Scholar 

  18. Roeffaers, M. B. et al. Spatially resolved observation of crystal face dependent catalysis by single turnover counting. Nature 439, 572–575 (2006).

    Article  CAS  Google Scholar 

  19. Xu, W., Kong, J. S., Yeh, Y. T. & Chen, P. Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics. Nature Mater. 7, 992–996 (2008).

    Article  CAS  Google Scholar 

  20. Bayley, H., Luchian, T., Shin, S. H. & Steffensen, M. B. in Single Molecules and Nanotechnology (eds. Rigler, R. & Vogel, H.) 251–277 (Springer, 2008).

    Book  Google Scholar 

  21. Shin, S. H., Luchian, T., Cheley, S., Braha, O. & Bayley, H. Kinetics of a reversible covalent-bond forming reaction observed at the single molecule level. Angew. Chem. Int. Ed. 41, 3707–3709 (2002).

    Article  CAS  Google Scholar 

  22. Luchian, T., Shin, S. H. & Bayley, H. Kinetics of a three-step reaction observed at the single molecule level. Angew. Chem. Int. Ed. 42, 1926–1929 (2003).

    Article  CAS  Google Scholar 

  23. Luchian, T., Shin, S. H. & Bayley, H. Single-molecule covalent chemistry with spatially separated reactants. Angew. Chem. Int. Ed. 42, 3766–3771 (2003).

    Article  CAS  Google Scholar 

  24. Shin, S. H. & Bayley, H. Stepwise growth of a single polymer chain. J. Am. Chem. Soc. 127, 10462–10463 (2005).

    Article  CAS  Google Scholar 

  25. Loudwig, S. & Bayley, H. Photoisomerization of an individual azobenzene molecule in water: an on-off switch triggered by light at a fixed wavelength. J. Am. Chem. Soc. 128, 12404–12405 (2006).

    Article  CAS  Google Scholar 

  26. Shin, S. H., Steffensen, M. B., Claridge, T. D. W. & Bayley, H. Formation of a chiral center and pyramidal inversion at the single-molecule level. Angew. Chem. Int. Ed. 46, 7412–7416 (2007).

    Article  CAS  Google Scholar 

  27. Wu, H. C. & Bayley, H. Single-molecule detection of nitrogen mustards by covalent reaction within a protein nanopore. J. Am. Chem. Soc. 130, 6813–6819 (2008).

    Article  CAS  Google Scholar 

  28. Zhang, Z., Rajagopalan, P. T., Selzer, T., Benkovic, S. J. & Hammes, G. G. Single-molecule and transient kinetics investigation of the interaction of dihydrofolate reductase with NADPH and dihydrofolate. Proc. Natl Acad. Sci. USA 101, 2764–2769 (2004).

    Article  CAS  Google Scholar 

  29. Finley, K. T. in The Chemistry of Quinonoid Compounds (eds. Patai, S. & Rappoport, Z.) 878–1144 (John Wiley & Sons, 1974).

    Google Scholar 

  30. Jameson, G. N., Zhang, J., Jameson, R. F. & Linert, W. Kinetic evidence that cysteine reacts with dopaminoquinone via reversible adduct formation to yield 5 cysteinyl dopamine: an important precursor of neuromelanin. Org. Biomol. Chem. 2, 777–782 (2004).

    Article  CAS  Google Scholar 

  31. Ogata, Y., Sawaki, Y. & Goto, S. Kinetics of the reaction of p-benzoquinone with sodium thiosulfate. J. Am. Chem. Soc. 90, 3469–3472 (1968).

    Article  CAS  Google Scholar 

  32. Ogata, Y., Sawaki, Y. & Isono, M. Kinetics of the addition of benzenesulfinic acid to p-benzoquinone. Tetrahedron 25, 2715–2721 (1969).

    Article  CAS  Google Scholar 

  33. Ogata, Y., Sawaki, Y. & Isono, M. Kinetics of the addition of substituted benzenesulfinic acids to p-benzoquinone. Tetrahedron 26, 731–736 (1970).

    Article  CAS  Google Scholar 

  34. Li, W. W., Heinze, J. & Haehnel, W. Site-specific binding of quinones to proteins through thiol addition and addition-elimination reactions. J. Am. Chem. Soc. 127, 6140–6141 (2005).

    Article  CAS  Google Scholar 

  35. Li, W. W., Hellwig, P., Ritter, M. & Haehnel, W. De novo design, synthesis, and characterization of quinoproteins. Chem. Eur. J. 12, 7236–7245 (2006).

    Article  CAS  Google Scholar 

  36. Riddles, P. W., Blakeley, R. L. & Zerner, B. Ellman's reagent: 5,5'-dithio(2-nitrobenzoic acid)- a reexamination. Anal. Biochem. 94, 75–81 (1979).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the MRC.

Author information

Authors and Affiliations

Authors

Contributions

S.L. and W-W.L. performed the kinetic measurements and analysed the data. W-W.L. synthesized deuterated UQ (1). S.L. and E.M. made the PSH pore. S.L, W-W.L. and D.R. performed simulations using QuB. S.L., W-W.L. and H.B. planned the research and wrote the paper.

Corresponding author

Correspondence to Hagan Bayley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1110 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, S., Li, WW., Rotem, D. et al. A primary hydrogen–deuterium isotope effect observed at the single-molecule level. Nature Chem 2, 921–928 (2010). https://doi.org/10.1038/nchem.821

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.821

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing