Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Kinetic resolution of constitutional isomers controlled by selective protection inside a supramolecular nanocapsule

Abstract

The concept of self-assembling container molecules as yocto-litre reaction flasks is gaining prominence. However, the idea of using such containers as a means of protection is not well developed. Here, we illustrate this idea in the context of kinetic resolutions. Specifically, we report on the use of a water-soluble, deep-cavity cavitand to bring about kinetic resolutions within pairs of esters that otherwise cannot be resolved because they react at very similar rates. Resolution occurs because the presence of the cavitand leads to a competitive binding equilibrium in which the stronger binder primarily resides inside the host and the weaker binding ester primarily resides in the bulk hydrolytic medium. For the two families of ester examined, the observed kinetic resolutions were highest within the optimally fitting smaller esters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular structures of the host and guests used in this study.
Figure 2: Binding of esters inside a deep-cavity cavitand.
Figure 3: Kinetics for the hydrolysis of ester 6 in the presence or absence of the cavitand.
Figure 4: Hydrolysis of similarly sized esters encapsulated within host 12.

Similar content being viewed by others

References

  1. Vriezema, D. M. et al. Self-assembled nanoreactors. Chem. Rev. 105, 1445–1489 (2005).

    Article  CAS  Google Scholar 

  2. Leung, D. H., Bergman, R. G. & Raymond, K. N. Highly selective supramolecular catalyzed allylic alcohol isomerization. J. Am. Chem. Soc. 129, 2746–2747 (2007).

    Article  CAS  Google Scholar 

  3. Kaanumalle, L. S., Gibb, C. L. D., Gibb, B. C. & Ramamurthy, V. Controlling photochemistry with distinct hydrophobic nano-environments. J. Am. Chem. Soc. 126, 14366–14367 (2004).

    Article  CAS  Google Scholar 

  4. Kaanumalle, L. S., Gibb, C. L. D., Gibb, B. C. & Ramamurthy, V. A hydrophobic nano-capsule controls the photophysics of aromatic molecules by suppressing their favored solution pathways. J. Am. Chem. Soc. 127, 3674–3675 (2005).

    Article  CAS  Google Scholar 

  5. Kaanumalle, L. S., Gibb, C. L. D., Gibb, B. C. & Ramamurthy, V. Photo-Fries reaction in water made selective with a capsule. Org. Biomol. Chem. 5, 236–238 (2007).

    Article  CAS  Google Scholar 

  6. Natarajan, A. et al. Controlling photoreactions with restricted spaces and weak intermolecular forces: remarkable product selectivity during oxidation of olefins by singlet oxygen. J. Am. Chem. Soc. 129, 4132–4133 (2007).

    Article  CAS  Google Scholar 

  7. Gibb, C. L. D., Sundaresan, A. K., Ramamurthy, V. & Gibb, B. C. Templation of the excited-state chemistry of α-(n-alkyl) dibenzyl ketones: how guest packing with a nanoscale supramolecular capsule influences photochemistry. J. Am. Chem. Soc. 130, 4069–4080 (2008).

    Article  CAS  Google Scholar 

  8. Sundaresan, A. K., Gibb, C. L.D., Gibb, B. C. & Ramamurthy, V. Chiral photochemistry in a confined space: torquoselective photoelectrocyclization of pyridones within an achiral hydrophobic capsule. Tetrahedron 65, 7277–7288 (2009).

    Article  CAS  Google Scholar 

  9. Sundaresan, A. K., Kaanumalle, L. S., Gibb, C. L. D., Gibb, B. G. & Ramamurthy, V. Chiral photochemistry within a confined space: diastereoselective photorearrangements of a tropolone and a cyclohexadienone included in a synthetic cavitand. Dalton Trans. 4003–4011 (2009).

  10. Pluth, M. D., Bergman, R. G. & Raymond, K. N. Acid catalysis in basic solution: a supramolecular host promotes orthoformate hydrolysis. Science 316, 85–88 (2007).

    Article  CAS  Google Scholar 

  11. Pluth, M. D., Bergman, R. G. & Raymond, K. N. Catalytic deprotection of acetals in basic solution with a self-assembled supramolecular ‘nanozyme’. Angew. Chem. Int. Ed. 46, 8587–8589 (2007).

    Article  CAS  Google Scholar 

  12. Pluth, M. D., Bergman, R. G. & Raymond, K. N. Supramolecular cataysis of orthoformate hydrolysis in basic solution: an enzyme like mechanism. J. Am. Chem. Soc. 130, 11423–11429 (2008).

    Article  CAS  Google Scholar 

  13. Furusawa, T., Kawano, M. & Fujita, M. The confined cavity of a coordination cage suppresses the photocleavage of α-diketones to give cyclization products through kinetically unfavorable pathways. Angew. Chem. Int. Ed. 46, 5717–5719 (2007).

    Article  CAS  Google Scholar 

  14. Murase, T., Sato, S. & Fujita, M. Nanometer-sized shell molecules that confine endohedral polymerizing units. Angew. Chem. Int. Ed. 46, 1083–1085 (2007).

    Article  CAS  Google Scholar 

  15. Nishioka, Y., Yamaguchi, T., Kawano, M. & Fujita, M. Asymmetric (2+2) olefin cross photoaddition in a self-assembled host with remote chiral auxiliaries. J. Am. Chem. Soc. 130, 8160–8161 (2008).

    Article  CAS  Google Scholar 

  16. Yamaguchi, T. & Fujita, M. Highly selective photomediated 1,4-radical addition to o-quinones controlled by a self-assembled cage. Angew. Chem. Int. Ed. 47, 2067–2069 (2008).

    Article  CAS  Google Scholar 

  17. Chen, J., Körner, S., Craig, S. L., Rudkevich, D. M. & Rebek, J. Jr. Amplification by compartmentalization. Nature 415, 385–386 (2002).

    Article  CAS  Google Scholar 

  18. Hayashida, O., Sebo, L. & Rebek, J. Jr. Molecular discrimination of N-protected amino acid esters by a self-assembled cylindrical capsule: spectroscopic and computational studies. J. Org. Chem. 67, 8291–8298 (2002).

    Article  CAS  Google Scholar 

  19. Purse, B. W., Gissot, A. & Rebek, J. Jr. A deep-cavitand provides a structured environment for the Menschutkin reaction. J. Am. Chem. Soc. 127, 11222–11223 (2005).

    Article  CAS  Google Scholar 

  20. Iwasawa, T., Wash, P., Gibson, C. & Rebek, J. Jr. Reaction of an introverted carboxylic acid with carbodiimide. Tetrahedron 63, 6506–6511 (2007).

    Article  CAS  Google Scholar 

  21. Shenoy, S. R., Crisostomo, F. R. P., Iwasawa, T. & Rebek, J. Jr. Organocatalysis in a synthetic receptor with and inwardly directed carboxylic acid. J. Am. Chem. Soc. 130, 5658–5659 (2008).

    Article  CAS  Google Scholar 

  22. Crisostomo, F. R. P., Lkedo, A., Shenoy, S. R., Iwasawa, T. & Rebek, J. Jr. Recognition and organocatalysis with a synthetic cavitand receptor. J. Am. Chem. Soc. 131, 7402–7410 (2009).

    Article  Google Scholar 

  23. Warmuth, R. & Yoon, J. Recent highlights in hemicarcerand chemistry. Acc. Chem. Res. 34, 95–105 (2001).

    Article  CAS  Google Scholar 

  24. Yebeutchou, R. M. & Dalcanale, E. Highly selective monomethylation of primary amines through host–guest product sequestration. J. Am. Chem. Soc. 131, 2452–2453 (2009).

    Article  CAS  Google Scholar 

  25. Vedejs, E. & Jure, M. Efficiency in nonenzymatic kinetic resolution. Angew. Chem. Int. Ed. 44, 3974–4001 (2005).

    Article  CAS  Google Scholar 

  26. Williams, J. M. J., Parker, R. J. & Neri, C. Enzyme Catalysis in Organic Synthesis (eds Drauz, K. & Waldmann H.) (Wiley-VCH, 2002).

    Google Scholar 

  27. Pellissier, H. Recent developments in dynamic kinetic resolution. Tetrahedron 64, 1563–1601 (2008).

    Article  CAS  Google Scholar 

  28. Martín-Matute, B. & Bäckvall, J. Dynamic kinetic resolution catalyzed by enzymes and metals. Curr. Opin. Chem. Biol. 226–232 (2007).

  29. Gibb, B. C. in Organic Nano-Structures (eds Atwood, J. L.& Steed, J. W.) (John Wiley & Sons, 2007).

    Google Scholar 

  30. Liu, S. & Gibb, B. C. High-definition self-assemblies driven by the hydrophobic effect: synthesis and properties of a supramolecular nanocapsule. Chem. Commun. 3709–3716 (2008).

  31. Ewell, J., Gibb, B. C. & Rick, S. W. Water inside a hydrophobic cavitand molecule. J. Phys. Chem. B 112, 10272–10279 (2008).

    Article  CAS  Google Scholar 

  32. Gibb, C. L. D. & Gibb, B. C. Templated assembly of water-soluble nano-capsules: inter-phase sequestration, storage and separation of hydrocarbon gases. J. Am. Chem. Soc. 128, 16498–16499 (2006).

    Article  CAS  Google Scholar 

  33. Gibb, C. L. D. & Gibb, B. C. Well defined, organic nano-environments in water: the hydrophobic effect drives a capsular assembly. J. Am. Chem. Soc. 126, 11408–11409 (2004).

    Article  CAS  Google Scholar 

  34. Gibb, C. L. D. & Gibb, B. C. Guests of differing polarities provide insight into structural requirements for templates of water-soluble nano-capsules. Tetrahedron 65, 7240–7248 (2009).

    Article  CAS  Google Scholar 

  35. Gibb, C. L. D. & Gibb, B. Straight-chain alkanes template the assembly of water-soluble nano-capsules. Chem. Commun. 1635–1637 (2007).

  36. Trembleau, L. & Rebek, J. Jr. Helical conformation of alkanes in a hydrophobic cavitand. Science 301, 1219–1220 (2003).

    Article  CAS  Google Scholar 

  37. Seeman, J. I. Effects of conformational change on reactivity in organic chemistry. evaluations, applications and extensions of Curtin–Hammett/Winstein–Holness kinetics. Chem. Rev. 83, 83–134 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B.C.G. acknowledges financial support from the National Science Foundation (NSF; CHE-0718461), the National Institutes of Health (NIH; GM074031) and the Post-Katrina Support Fund Initiative (PKSFI, LEQSF(2007-12)-ENH-PKSFI-PRS-04). S.W.R. acknowledges financial support from the NSF (CHE-0611679). The authors also thank G. Raman and A. Sankaranarayanan for calculating the dipole, log P and solubility values of esters 2 to 6.

Author information

Authors and Affiliations

Authors

Contributions

B.C.G. and S.L. conceived and designed the experiments. S.L. synthesized esters 26 and performed the experiments involving these guests. H.G. and A.T.H contributed equally to the syntheses and experiments involving esters 711. B.C.G. wrote the paper.

Corresponding author

Correspondence to Bruce C. Gibb.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2511 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Gan, H., Hermann, A. et al. Kinetic resolution of constitutional isomers controlled by selective protection inside a supramolecular nanocapsule. Nature Chem 2, 847–852 (2010). https://doi.org/10.1038/nchem.751

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.751

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing