Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A concentric planar doubly π-aromatic B19 cluster

Abstract

Atomic clusters often show unique, size-dependent properties and have become a fertile ground for the discovery of novel molecular structures and chemical bonding. Here we report an investigation of the B19 cluster, which shows chemical bonding reminiscent of that in [10]annulene (C10H10) and [6]circulene (C24H12). Photoelectron spectroscopy reveals a relatively simple spectrum for B19, with a high electron-binding energy. Theoretical calculations show that the global minimum of B19 is a nearly circular planar structure with a central B6 pentagonal unit bonded to an outer B13 ring. Chemical bonding analyses reveal that the B19 cluster possesses a unique double π-aromaticity in two concentric π-systems, with two π-electrons delocalized over the central pentagonal B6 unit and another ten π-electrons responsible for the π-bonding between the central pentagonal unit and the outer ring. Such peculiar chemical bonding does not exist in organic compounds; it can only be found in atomic clusters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of the structure and chemical bonding of B19 with two hydrocarbon molecules.
Figure 2: Photoelectron spectra of B19.
Figure 3: Four representative optimized isomers of B19.
Figure 4: Comparison of the structures and canonical molecular orbitals between [10]annulene (C10H10) and the global minimum of B19.

Similar content being viewed by others

References

  1. Minkin, V. I., Glukhovtsev, M. N. & Simkin, B. Y. Aromaticity and Antiaromaticity (Wiley, 1994).

    Google Scholar 

  2. Schleyer, P. v. R. (ed.) Special edition on delocalization pi and sigma. Chem. Rev. 105 (2005).

  3. Schleyer, P. v. R. (ed.) Special edition on aromaticity. Chem. Rev. 101 (2001).

  4. Masamune, S., Hojo, K., Hojo Kiyomi, Bigam, G. & Rabenstein, D. L. Geometry of [10]annulenes. J. Am. Chem. Soc. 93, 4966–4968 (1971).

    Article  CAS  Google Scholar 

  5. Masamune, S. & Darby, N. [10]Annulenes and other (CH)10 hydrocarbons. Acc. Chem. Res. 5, 272–281 (1972).

    Article  CAS  Google Scholar 

  6. King, R. A., Crawford, T. D., Stanton, J. F. & Schaefer, H. F. III. Conformations of [10]annulene: more bad news for density functional theory and second-order perturbation theory. J. Am. Chem. Soc. 121, 10788–10793 (1999).

    Article  CAS  Google Scholar 

  7. Price, D. R. & Stanton, J. F. Computational study of [10]annulene NMR spectra. Org. Lett. 4, 2809–2811 (2002).

    Article  CAS  Google Scholar 

  8. Li, X., Kuznetsov, A. E., Zhang, H. F., Boldyrev, A. I. & Wang, L. S. Observation of all-metal aromatic molecules. Science 291, 859–861 (2001).

    Article  CAS  Google Scholar 

  9. Zhai, H. J., Alexandrova, A. N., Birch, K. A., Boldyrev, A. I. & Wang, L. S. Hepta- and octacoordinate boron in molecular wheels of eight- and nine-atom boron clusters: observation and confirmation. Angew. Chem. Int. Ed. 42, 6004–6008 (2003).

    Article  CAS  Google Scholar 

  10. Zhai, H. J., Kiran, B., Li, J. & Wang, L. S. Hydrocarbon analogues of boron clusters – planarity, aromaticity and antiaromaticity. Nature Mater. 2, 827–833 (2003).

    Article  CAS  Google Scholar 

  11. Alexandrova, A. N., Boldyrev, A. I., Zhai, H. J. & Wang, L. S. All-boron aromatic clusters as potential new inorganic ligands and building blocks in chemistry. Coord. Chem. Rev. 250, 2811–2866 (2006).

    Article  CAS  Google Scholar 

  12. Zubarev, D. Yu. & Boldyrev, A. I. Comprehensive analysis of chemical bonding in boron clusters. J. Comput. Chem. 28, 251–268 (2007).

    Article  CAS  Google Scholar 

  13. Fowler, J. E. & Ugalde, J. M. The curiously stable B13+ cluster and its neutral and anionic counterparts: the advantages of planarity. J. Phys. Chem. A 104, 397–403 (2000).

    Article  CAS  Google Scholar 

  14. Mercero, J. M. & Ugalde, J. M. Sandwich-like complexes based on ‘all-metal’ (Al42−) aromatic compounds. J. Am. Chem. Soc. 126, 3380–3381 (2004).

    Article  CAS  Google Scholar 

  15. Aihara, J. B13+ is highly aromatic. J. Phys. Chem. A 105, 5486–5489 (2001).

    Article  CAS  Google Scholar 

  16. Fowler, P. W. & Gray, B. R. Induced currents and electron counting in aromatic boron wheels: B82− and B9. Inorg. Chem. 46, 2892–2897 (2007).

    Article  CAS  Google Scholar 

  17. Hanley, L. & Anderson, S. L. Production and collision-induced dissociation of small boron cluster ions. J. Phys. Chem. 91, 5161–5163 (1987).

    Article  CAS  Google Scholar 

  18. Hanley, L., Whitten, J. L. & Anderson, S. L. Collision-induced dissociation and ab initio studies of boron cluster ions: determination of structures and stabilities. J. Phys. Chem. 92, 5803–5812 (1988).

    Article  CAS  Google Scholar 

  19. Hintz, P. A., Ruatta, S. A. & Anderson, S. L. Interaction of boron cluster ions with water: single collision dynamics and sequential etching. J. Chem. Phys. 92, 292–303 (1990).

    Article  CAS  Google Scholar 

  20. Hintz, P. A., Sowa, M. B., Ruatta, S. A. & Anderson, S. L. Reactions of boron cluster ions (Bn+n = 2–24) with N2O: NO versus NN bond activation as a function of size J. Chem. Phys. 94, 6446–6458 (1991).

    Article  CAS  Google Scholar 

  21. Sowa-Resat, M. B., Smolanoff, J., Lapiki, A. & Anderson, S. L. Interaction of small boron cluster ions with HF. J. Chem. Phys. 106, 9511–9522 (1997).

    Article  CAS  Google Scholar 

  22. Zhai, H. J., Wang, L. S., Alexandrova, A. N. & Boldyrev, A. I. Electronic structure and chemical bonding of B5 and B5 by photoelectron spectroscopy and ab initio calculations. J. Chem. Phys. 117, 7917–7924 (2002).

    Article  CAS  Google Scholar 

  23. Alexandrova, A. N. et al. Structure and bonding in B6 and B6: planarity and antiaromaticity. J. Phys. Chem. A 107, 1359–1369 (2003).

    Article  CAS  Google Scholar 

  24. Zhai, H. J., Wang, L. S., Alexandrova, A. N., Boldyrev, A. I. & Zakrzewski, V. G. Photoelectron spectroscopy and ab initio study of B3 and B4 anions and their neutrals. J. Phys. Chem. A 107, 9319–9328 (2003).

    Article  CAS  Google Scholar 

  25. Kiran, B. et al. Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes. Proc. Natl Acad. Sci. USA 102, 961–964 (2005).

    Article  CAS  Google Scholar 

  26. Sergeeva, A. P., Zubarev, D. Yu., Zhai, H. J., Boldyrev, A. I. & Wang, L. S. A photoelectron spectroscopic and theoretical study of B16 and B162−: an all-boron naphthalene. J. Am. Chem. Soc. 130, 7244–7246 (2008).

    Article  CAS  Google Scholar 

  27. Zubarev, D. Yu. & Boldyrev, A. I. Revealing intuitively assessable chemical bonding patterns in organic aromatic molecules via adaptive natural density partitioning. J. Org. Chem. 73, 9251–9258 (2008).

    Article  CAS  Google Scholar 

  28. Wang, L. S., Cheng, H. S. & Fan, J. Photoelectron spectroscopy of size-selected transition metal clusters: Fen, n = 3–24. J. Chem. Phys. 102, 9480–9493 (1995).

    Article  CAS  Google Scholar 

  29. Saunders, M. Stochastic search for isomers on a quantum mechanical surface. J. Comput. Chem. 25, 621–626 (2004).

    Article  CAS  Google Scholar 

  30. Wales, D. J. & Doye, J. P. K. Global optimization by basin-hopping and the lowest energy structures of Lennard–Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101, 5111–5116 (1997).

    Article  CAS  Google Scholar 

  31. Fujimori, M. et al. Peculiar covalent bonds in α-rhombohedral boron. Phys. Rev. Lett. 82, 4452–4455 (1999).

    Article  CAS  Google Scholar 

  32. Oger, E. et al. Boron cluster cations: transition from planar to cylindrical structures. Angew. Chem. Int. Ed. 46, 8503–8506 (2007).

    Article  CAS  Google Scholar 

  33. Zubarev, D. Yu. & Boldyrev, A. I. Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys. Chem. Chem. Phys. 10, 5207–5217 (2008).

    Article  CAS  Google Scholar 

  34. Schleyer, P. v. R., Maerker, C., Dransfeld, A., Jiao, H. J. & Hommes, N. J. R. V. Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc. 118, 6317–6318 (1996).

    Article  CAS  Google Scholar 

  35. Clar, E. The Aromatic Sextet (Wiley, 1972).

    Google Scholar 

  36. Frisch, M. J. et al. The Gaussian 03 program (revision D.01) (Gaussian, 2003).

  37. Portmann, S. Molekel, Version 4.3 (Swiss National Supercomputing Centre/Swiss Federal Institute of Technology Zurich, 2002).

Download references

Acknowledgements

The experimental work was supported by the National Science Foundation (DMR-0904034). The basin-hopping search was performed with supercomputers at the EMSL Molecular Science Computing Facility, Pacific Northwest National Laboratory. The theoretical work done at Logan was supported by the National Science Foundation (CHE-0714851).

Author information

Authors and Affiliations

Authors

Contributions

H.J.Z. performed the experiment. W.H. carried out the basin-hopping global minimum search. B.B.A. performed the Coalescence Kick global minimum search. A.P.S. carried out the geometry optimization and frequency calculations of all the B19 isomers recovered by the basin-hopping and the Coalescence Kick global minimum searches, and the calculations of VDEs, molecular orbital chemical bonding analyses and the AdNDP chemical bonding analyses. The experiment was designed by L.S.W. The data analyses were done by A.P.S., W.H., L.S.W. and A.I.B. The manuscript was written by A.P.S., L.S.W. and A.I.B., and was commented on by all the authors. A.I.B. and L.S.W. contributed equally to the study.

Corresponding authors

Correspondence to Lai-Sheng Wang or Alexander I. Boldyrev.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6314 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, W., Sergeeva, A., Zhai, HJ. et al. A concentric planar doubly π-aromatic B19 cluster. Nature Chem 2, 202–206 (2010). https://doi.org/10.1038/nchem.534

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.534

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing