Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly diastereoselective Csp3–Csp2 Negishi cross-coupling with 1,2-, 1,3- and 1,4-substituted cycloalkylzinc compounds

Abstract

Stereoselective functionalizations of organic molecules are of great importance to modern synthesis. A stereoselective preparation of pharmaceutically active molecules is often required to ensure the appropriate biological activity. Thereby, diastereoselective methods represent valuable tools for an efficient set-up of multiple stereocentres. In this article, highly diastereoselective Csp3 Negishi cross-couplings of various cycloalkylzinc reagents with aryl halides are reported. In all cases, the thermodynamically most-stable stereoisomer was obtained. Remarkably, this diastereoselective coupling was successful not only for 1,2-substituted cyclic systems, but also for 1,3- and 1,4-substituted cyclohexylzinc reagents. The origin of this remote stereocontrol was investigated by NMR experiments and density functional theory calculations. A detailed mechanism based on these experimental and theoretical data is proposed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diastereoselective cross-coupling with various cycloalkylzinc reagents.
Figure 2: Mechanistic proposal for the diastereoselective cross-coupling of substituted cycloalkylzinc reagents with aryl iodides.
Figure 3: NMR studies on the transmetallation of 3-methylcyclohexylzinc chloride (17a) to give (TMPP)2PdCl2.

Similar content being viewed by others

References

  1. Rudolph, A. & Lautens, M. Secondary alkyl halides in transition-metal-catalyzed cross-coupling reactions. Angew. Chem. Int. Ed. 48, 2656–2670 (2009).

    Article  CAS  Google Scholar 

  2. Terao, J. & Kambe, N. Cross-coupling reaction of alkyl halides with Grignard reagents catalyzed by Ni, Pd, or Cu complexes with π-carbon ligand(s). Acc. Chem. Res. 41, 1545–1554 (2008).

    Article  CAS  Google Scholar 

  3. Chemler, S. R., Trauner, D. & Danishefsky, S. J. The β-alkyl Suzuki–Miyaura cross-coupling reaction: development, mechanistic study, and applications in natural product synthesis. Angew. Chem. Int. Ed. 40, 4544–4568 (2001).

    Article  CAS  Google Scholar 

  4. Corbet, J.-P. & Mignani, G. Selected patented cross-coupling reaction technologies. Chem. Rev. 106, 2651–2710 (2006).

    Article  CAS  Google Scholar 

  5. Valente, C., Baglione, S., Candito, D., O'Brien, C. J. & Organ, M. G. High yielding alkylations of unactivated sp3 and sp2 centers with alkyl-9-BBN reagents using an NHC-based catalyst: Pd-PEPPSI-IPr. Chem. Commun. 735–737 (2008).

  6. Jin, L., Zhao, Y., Wang, H. & Lei, A. Palladium-catalyzed R(sp3)–Zn/R(sp)–SnBu3 oxidative cross-coupling. Synthesis 649–654 (2008).

  7. Zhao, Y. et al. Oxidative cross-coupling through double transmetallation: surprisingly high selectivity for palladium-catalyzed cross-coupling of alkylzinc and alkynylstannanes. J. Am. Chem. Soc. 128, 15048–15049 (2006).

    Article  CAS  Google Scholar 

  8. Hadei, N., Kantchev, E. A. B., O'Brien, C. J. & Organ, M. G. The first Negishi cross-coupling reaction of two alkyl centers utilizing a Pd–N–heterocyclic carbene (NHC) catalyst. Org. Lett. 7, 3805–3807 (2005).

    Article  CAS  Google Scholar 

  9. Powell, D. A., Maki, T. & Fu, G. C. Stille cross-couplings of unactivated secondary alkyl halides using monoorganotin reagents. J. Am Chem. Soc. 127, 510–511 (2005).

    Article  CAS  Google Scholar 

  10. Negishi, E., Valente, L. F. & Kobayashi, M. Palladium-catalyzed cross-coupling reaction of homoallylic or homopropargylic organozincs with alkenyl halides as a new selective route to 1,5-dienes and 1,5-enynes. J. Am Chem. Soc. 102, 3298–3299 (1980).

    Article  CAS  Google Scholar 

  11. Hayashi, T., Konishi, M. & Kumada, M. Dichloro[1,1′-bis(diphenylphosphino)ferrocene]-palladium(ii): an effective catalyst for cross-coupling reaction of a secondary alkyl Grignard reagent with organic halides. Tetrahedron Lett. 1871–1874 (1979).

  12. Studte, C. & Breit B. Zinc-catalyzed enantiospecific sp3–sp3 cross-coupling of alpha-hydroxy ester triflates with Grignard reagents. Angew. Chem. Int. Ed. 47, 5451–5455 (2008).

    Article  CAS  Google Scholar 

  13. Rodriguez, N. et al. Palladium-catalyzed reaction of boronic acids with chiral and racemic α-bromo sulfoxides. J. Org. Chem. 69, 8070–8076 (2004).

    Article  CAS  Google Scholar 

  14. Hoelzer, B. & Hoffmann, R. W. Kumada–Corriu coupling of Grignard reagents, probed with a chiral Grignard reagent. Chem. Commun. 732–733 (2003).

  15. Glorius, F. Asymmetric cross-coupling of non-activated secondary alkyl halides. Angew. Chem. Int. Ed. 47, 8347–8349 (2008).

    Article  CAS  Google Scholar 

  16. Hayashi, T. Catalytic asymmetric cross-coupling. J. Organomet. Chem. 653, 41–45 (2002).

    Article  CAS  Google Scholar 

  17. Cross, G., Vriesema, B. K., Boven, G., Kellogg, R. M. & Van Bolhuis, F. Transition-metal-catalyzed asymmetric cross coupling reactions. New ligands and the effects of added salts. Crystal structures of [Ph2PCH2CH{(CH2)3SMe}NMe2]PdCl2 and [Ph2PCH2CH{(CH2)2SMe}NMe2]PdCl2 . J. Organomet. Chem. 370, 357–381 (1989).

    Article  CAS  Google Scholar 

  18. Hayashi, T., Hagihara, T., Katsuro, Y. & Kumada, M. Asymmetric cross-coupling of organozinc reagents with alkenyl bromides catalyzed by a chiral ferrocenylphosphine–palladium complex. Bull. Chem. Soc. Jpn 56, 363–364 (1983).

    Article  CAS  Google Scholar 

  19. Lundin, P. M., Esquivias, J. & Fu, G. C. Catalytic asymmetric cross-couplings of racemic α-bromoketones with arylzinc reagents. Angew. Chem. Int. Ed. 48, 154–156 (2009).

    Article  CAS  Google Scholar 

  20. Caeiro, J., Perez Sestelo, J. & Sarandeses, L. A. Enantioselective nickel-catalyzed cross-coupling reactions of trialkynylindium reagents with racemic secondary benzyl bromides. Chem. Eur. J. 14, 741–746 (2008).

    Article  CAS  Google Scholar 

  21. Fischer, C. & Fu, G. C. Asymmetric nickel-catalyzed Negishi cross-couplings of secondary α-bromo amides with organozinc reagents. J. Am. Chem. Soc. 127, 4594–4595 (2005).

    Article  CAS  Google Scholar 

  22. Hayashi, T. et al. Preparation of (R)-N,N-dimethyl-1-[2-(diphenylphosphino)ferrocenyl]-2-propanamines and asymmetric Grignard cross-coupling catalyzed by nickel complexes with the phosphine ligands. Bull. Chem. Soc. Jpn 54, 3615–3616 (1981).

    Article  CAS  Google Scholar 

  23. Hayashi, T., Tajika, M., Tamao, K. & Kumada, M. High stereoselectivity in asymmetric Grignard cross-coupling catalyzed by nickel complexes of chiral (aminoalkylferrocenyl)phosphines. J. Am. Chem. Soc. 98, 3718–3719 (1976).

    Article  CAS  Google Scholar 

  24. Negishi, E., King, A. O. & Okukado, N. Selective carbon–carbon bond formation via transition metal catalysis. 3. A highly selective synthesis of unsymmetrical biaryls and diarylmethanes by the nickel- or palladium-catalyzed reaction of aryl- and benzylzinc derivatives with aryl halides. J. Org. Chem. 42, 1821–1823 (1977).

    Article  CAS  Google Scholar 

  25. Beckmann, J., Dakternieks, D., Draeger, M. & Duthie, A. New insights into the classic chiral Grignard reagent (1R,2S,5R)-menthylmagnesium chloride. Angew. Chem. Int. Ed. 45, 6509–6512 (2006).

    Article  CAS  Google Scholar 

  26. Lange, G. L. & Gottardo, C. Facile conversion of primary and secondary alcohols to alkyl iodides. Synth. Commun. 20, 1473–1479 (1990).

    Article  CAS  Google Scholar 

  27. Krasovskiy, A., Malakhov, V., Gavryushin, A. & Knochel, P. Efficient synthesis of functionalized organozinc compounds by the direct insertion of zinc into organic iodides and bromides. Angew. Chem. Int. Ed. 45, 6040–6044 (2006).

    Article  CAS  Google Scholar 

  28. Walker, S. D., Barder, T. E., Martinelli, J. R. & Buchwald, S. L. A rationally designed universal catalyst for Suzuki–Miyaura coupling processes. Angew. Chem. Int. Ed. 43, 1871–1876 (2004).

    Article  CAS  Google Scholar 

  29. Barnier, J. P. & Blanco, L. Chemo-enzymatic preparations of (R)- and (S)-3-iodocyclohex-2-en-1-yl acetate. Synth. Commun. 33, 2487–2496 (2003).

    Article  CAS  Google Scholar 

  30. Dreher, S. D., Dormer, P. G., Sandrock, D. L. & Molander, G. A. Efficient cross-coupling of secondary alkyltrifluoroborates with aryl chlorides – reaction discovery using parallel microscale experimentation. J. Am. Chem. Soc. 130, 9257–9259 (2008).

    Article  CAS  Google Scholar 

  31. Dunbar, K. R. & Sun, J.-S. Synthesis and structure of the distorted octahedral palladium(ii) complex [Pd(tmpp)2][BF4]2 [tmpp = tris(2,4,6-trimethoxyphenyl)phosphine]. J. Chem. Soc. Chem. Commun. 2387–2388 (1994).

  32. Scianowski, J., Rafinski, Z. & Wojtczak, A. Syntheses and reactions of new optically active terpene dialkyl diselenides. Eur. J. Org. Chem. 3216–3225 (2006).

  33. Kosower, E. M. & Winstein, S. Neighboring carbon and hydrogen. XXIII. Homoallylic systems. 3,5-Cyclocholestan-6β-yl chloride. J. Am. Chem. Soc. 78, 4354–4358 (1956).

    Article  CAS  Google Scholar 

  34. Hirsch, R. & Hoffmann, R. W. Chiral organometallic reagents. V. A test on the configurational stability of chiral organolithium compounds based on kinetic resolution; scope and limitations. Chem. Ber. 125, 975–982 (1992).

    Article  CAS  Google Scholar 

  35. Guijarro, A. & Rieke, R. D. Study of the configuration stability of the carbon–zinc bond, direct measurement of enantiomeric ratios, and tentative assignment of the absolute configuration in secondary organozinc halides. Angew. Chem. Int. Ed. 39, 1475–1479 (2000).

    Article  CAS  Google Scholar 

  36. Micouin, L., Oestreich, M. & Knochel, P. Stereoselective preparation and reactions of cycloalkylzinc compounds. Angew. Chem. Int. Ed. 36, 245–246 (1997).

    Article  CAS  Google Scholar 

  37. Boudier, A. et al. Stereoselective preparation and reactions of configurationally defined dialkylzinc compounds. Chem. Eur. J. 6, 2748–2761 (2000).

    Article  CAS  Google Scholar 

  38. Campos, K. R., Klapars, A., Waldman, J. H., Dormer, P. G. & Chen, C.-y. Enantioselective, palladium-catalyzed α-arylation of N-Boc-pyrrolidine. J. Am. Chem. Soc. 128, 3538–3539 (2006).

    Article  CAS  Google Scholar 

  39. Frisch, M. J. et al. Gaussian 03 (Gaussian Inc., Wallingford, Connecticut, 2004).

  40. Parr, R. G. & Yang, W. Density Functional Theory of Atoms and Molecules (Oxford Univ. Press, 1989).

    Google Scholar 

  41. Ziegler, T. Approximate density functional theory as a practical tool in molecular energetics and dynamics. Chem. Rev. 91, 651–667 (1991).

    Article  CAS  Google Scholar 

  42. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  43. Becke, A. D. Density functional exchange-energy approximation with correct asymptotic behaviour. Phys. Rev. A 38, 3098–3100 (1988).

    Article  CAS  Google Scholar 

  44. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  CAS  Google Scholar 

  45. Hariharan, P. C. & Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. Theoret. Chim. Acta 28, 213–222 (1973).

    Article  CAS  Google Scholar 

  46. Francl, M. M. et al. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 77, 3654–3665 (1982).

    Article  CAS  Google Scholar 

  47. Rassolov, V. A., Pople, J. A., Ratner, M. A. & Windus, T. L. 6-31G* basis set for atoms K through Zn. J. Chem. Phys. 109, 1223–1229 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the European Research Council, the Fonds der Chemischen Industrie, the Sonderforschungsbereich 749 and the Deutsche Forschungsgemeinschaft for financial support. We also thank Evonik Degussa GmbH, BASF AG, W. C. Heraeus GmbH, Chemetall GmbH and Solvias AG for generous gifts of chemicals.

Author information

Authors and Affiliations

Authors

Contributions

T.T. and A.G. planned, conducted and analysed the experiments. B.H. and H.Z. planned and analysed the DFT calculations. B.H. conducted the DFT calculations. T.T., K.S., E.H. and R.M.G. planned and conducted the NMR experiments. K.S., E.H. and R.M.G. analysed the NMR experiments. P.M. performed the X-ray analysis. P.K. designed and directed the project and wrote the manuscript, with contributions from T.T., B.H. and R.M.G. All authors except P.M. contributed to discussions.

Corresponding author

Correspondence to Paul Knochel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4552 kb)

Supplementary information

Crystallographic data for compound 5a (CIF 16 kb)

Supplementary information

Crystallographic data for compound 18a (CIF 17 kb)

Supplementary information

Crystallographic data for compound 31 (CIF 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thaler, T., Haag, B., Gavryushin, A. et al. Highly diastereoselective Csp3–Csp2 Negishi cross-coupling with 1,2-, 1,3- and 1,4-substituted cycloalkylzinc compounds. Nature Chem 2, 125–130 (2010). https://doi.org/10.1038/nchem.505

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.505

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing