Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Radically enhanced molecular recognition

Abstract

The tendency for viologen radical cations to dimerize has been harnessed to establish a recognition motif based on their ability to form extremely strong inclusion complexes with cyclobis(paraquat-p-phenylene) in its diradical dicationic redox state. This previously unreported complex involving three bipyridinium cation radicals increases the versatility of host–guest chemistry, extending its practice beyond the traditional reliance on neutral and charged guests and hosts. In particular, transporting the concept of radical dimerization into the field of mechanically interlocked molecules introduces a higher level of control within molecular switches and machines. Herein, we report that bistable and tristable [2]rotaxanes can be switched by altering electrochemical potentials. In a tristable [2]rotaxane composed of a cyclobis(paraquat-p-phenylene) ring and a dumbbell with tetrathiafulvalene, dioxynaphthalene and bipyridinium recognition sites, the position of the ring can be switched. On oxidation, it moves from the tetrathiafulvalene to the dioxynaphthalene, and on reduction, to the bipyridinium radical cation, provided the ring is also reduced simultaneously to the diradical dication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Formation of the inclusion complex and structural formulae and graphical representations.
Figure 2: Cyclic voltammetry (CV) showing evidence for formation of the inclusion complex.
Figure 3: Spectroelectrochemistry (SEC) of the model compounds V2+, SV2+ and CBPQT4+, and of equimolar mixtures of V2+ and CBPQT4+ and SV2+ and CBPQT4+ before (base line separation) and after reduction.
Figure 4: Graphical representations of the molecular orbital calculations.
Figure 5: Summary of the binding energy determination.
Figure 6: The stepwise synthesis of the three [2]rotaxanes 16+, 26+, and 36+.
Figure 7: Steady-state CW EPR spectroscopy.
Figure 8: Switching in an orthogonal manner.

Similar content being viewed by others

References

  1. Jeon, W. S., Kim, H.-J., Lee, C. & Kim, K. Control of the stoichiometry in host-guest complexation by redox chemistry of guests: Inclusion of methylviologen in cucurbit[8]uril. Chem. Commun. 1828–1829 (2002).

  2. Hwang, I., Ziganshina, A. Y., Ko, Y. H., Yun, G. & Kim, K. A. new three-way supramolecular switch based on redox-controlled interconversion of heter- and homo-guest-pair inclusion inside a host molecule. Chem. Commun. 416–418 (2008).

  3. Kim, K. et al. Functionalized cucurbiturils and their applications. Chem. Soc. Rev. 36, 267–279 (2007).

    Article  CAS  Google Scholar 

  4. Ko, Y. H., Kim, E., Hwang, I. & Kim, K. Supramolecular assemblies built with host-stabilized charge-transfer interactions. Chem. Commun. 1305–1315 (2007).

  5. Goren, Z. & Willner, I. Photochemical and chemical reduction of vicinal dibromides via phase transfer of 4,4'-bipyridinium radical: the role of radical disproportionation. J. Am. Chem. Soc. 105, 7764–7765 (1983).

    Article  CAS  Google Scholar 

  6. Endo, T., Saotome, Y. & Okawara, M. Viologens used ‘electron phase transfer’. Catalytic debromination of vic-dibromides under heterophase conditions using viologens J. Am. Chem. Soc. 106, 1124–1125 (1984).

    Article  CAS  Google Scholar 

  7. Park, K. K., Oh, C. H. & Joung, W. K. Sodium dithionite reduction of nitroarenes using viologen as an electron phase-transfer catalyst. Tetrahedron Lett. 34, 7445–7446 (1993).

    Article  CAS  Google Scholar 

  8. van Dam, H. T. & Ponjee, J. J. Electrochemically generated colored films of insoluble viologen radical compounds. J. Electrochem. Soc. 121, 1555–1558 (1974).

    Article  CAS  Google Scholar 

  9. Bruinink, J. & Kregting, C. G. A. Modified viologens with improved electrochemical properties for display applications. J. Electrochem. Soc. 124, 1854–1858 (1977).

    Article  CAS  Google Scholar 

  10. Bruinink, J. & Kregting, C. G. A. The voltammetric behavior of some viologens at SnO2 electrodes. J. Electrochem. Soc. 125, 1397–1401 (1978).

    Article  CAS  Google Scholar 

  11. Yasuda, A., Mori, H. & Seto, J. Electrochromic properties of alkylviologen-cyclodextrin systems. J. Appl. Electrochem. 17, 567–573 (1987).

    Article  CAS  Google Scholar 

  12. Harriman, A. & West, M. A. Photogeneration of Hydrogen (Academic Press, 1982).

    Google Scholar 

  13. Grätzel, M. Energy Resources through Photochemistry and Catalysis (Academic Press, 1983).

    Google Scholar 

  14. Adar, E., Degani, Y., Goren, Z. & Willner, I. Photosensitized electron-transfer reactions in beta-cyclodextrin aqueous media: effects on dissociation of ground-state complexes, charge separation, and hydrogen evolution. J. Am. Chem. Soc. 108, 4696–4700 (1986).

    Article  CAS  Google Scholar 

  15. Trabolsi, A. et al. Redox-driven switching in pseudorotaxanes. New J. Chem. 33, 254–263 (2009).

    Article  CAS  Google Scholar 

  16. Kosower, E. M. & Cotter, J. L. Stable free radicals. II. The reduction of 1-methyl-4-cyanopyridinium ion to methylviologen cation radical. J. Am. Chem. Soc. 86, 5524–5527 (1964).

    Article  CAS  Google Scholar 

  17. Evans, A. G., Evans, J. C. & Baker, M. W. Bipyridyl radical cations. Part I. Electron spin resonance study of the dimerisation equilibrium of morphamquat radical cation in methanol. J. Chem. Soc. Perkin Trans. 2, 1310–1311 (1975).

  18. Evans, A. G., Evans, J. C. & Baker, M. W. Electron spin resonance study of the dimerization equilibrium of the radical cation of 1,1'-diethyl-4,4'-bipyridylium diiodide in methanol. J. Am. Chem. Soc. 99, 5882–5884 (1977).

    Article  CAS  Google Scholar 

  19. Claude-Montigny, B., Merlin, A. & Tondre, C. Microenvironment effects on the kinetics of electron-transfer reactions involving dithionite ions and viologens. 2. Stabilization of ion radicals by polyelectrolytes and dimerization kinetics of dialkyl viologens. J. Phys. Chem. 96, 4432–4437 (1992).

    Article  CAS  Google Scholar 

  20. Meisel, D., Mulac, W. A. & Metheson, M. S. Catalysis of methyl viologen radical reactions by polymer-stabilized gold sols. J. Phys. Chem. 85, 179–187 (1981).

    Article  CAS  Google Scholar 

  21. Furue, M. & Nozakura, S. Photoinduced two-electron reduction of methyl viologen dimer by 2-propanol through intramolecular process an formation of viologen radical cation dimer. Chem. Lett. 9, 821–824 (1980).

    Article  Google Scholar 

  22. Park, J. W., Choi, N. H. & Kim, J. H. Facile dimerization of viologen radical cations covalently bonded to β-cyclodextrin and suppression of the dimerization by β-cyclodextrin and amphiphiles. J. Phys. Chem. 100, 769–774 (1996).

    Article  CAS  Google Scholar 

  23. Quintela, P. A. & Kaifer, A. E. Electrochemistry of methylviologen in the presence of sodium decyl sulfate. Langmuir 3, 769–773 (1987).

    Article  CAS  Google Scholar 

  24. Ito, M., Sasaki, H. & Takahashi, M. Infrared spectra and dimer structure of reduced viologen compounds. J. Phys. Chem. 91, 3932–3934 (1987).

    Article  CAS  Google Scholar 

  25. Meisel, D., Mulac, W. A. & Metheson, M. S. Catalysis of methyl viologen radical reactions by polymer-stabilized gold sols. J. Phys. Chem. 85, 179–187 (1981).

    Article  CAS  Google Scholar 

  26. Johnson, C. S. & Gutowsky, H. S. High-resolution ESR spectra of photochemically generated free radicals: the viologens J. Chem. Phys. 39, 58–62 (1963).

    Article  CAS  Google Scholar 

  27. Gaudiello, J. G., Ghosh, P. K. & Jones, C. C. Polymer films on electrodes. 17. The application of simultaneous electrochemical and electron spin resonance techniques for the study of two viologen-based chemically modified electrodes J. Am. Chem. Soc. 107, 3027–3032 (1985).

    Article  CAS  Google Scholar 

  28. Stoddart, J. F. & Colquhoun, H. M. Big and little Meccano. Tetrahedron 64, 8231–8263 (2008).

    Article  CAS  Google Scholar 

  29. Stoddart, J. F. The chemistry of the mechanical bond. Chem. Soc. Rev. 38, 1802–1820 (2009).

    Article  CAS  Google Scholar 

  30. Odell, B. et al. Cyclobis (paraquat-p-phenylene). A tetracationic multipurpose receptor. Angew. Chem. Int. Ed. Engl. 27, 1547–1550 (1988).

    Article  Google Scholar 

  31. Asakawa, M. et al. Improved template-directed synthesis of cyclobis(paraquat-p-phenylene). J. Org. Chem. 61, 9591–9595 (1996).

    Article  CAS  Google Scholar 

  32. Jeppesen, J. O. et al. Amphiphilic bistable rotaxanes. Chem. Eur. J. 9, 2982–3007 (2003).

    Article  CAS  Google Scholar 

  33. Choi, J. W. et al. Ground-state equilibrium thermodynamics and switching kinetics of bistable [2]rotaxanes switched in solution, polymer gels, and molecular electronic devices. Chem. Eur. J. 12, 261–279 (2006).

    Article  CAS  Google Scholar 

  34. Liu, Y. et al. Structures and properties of self-assembled monolayers of bistable [2]rotaxanes on Au (111) surfaces from molecular dynamics simulations validated by experiment. J. Am. Chem. Soc. 127, 9745–9759 (2005).

    Article  CAS  Google Scholar 

  35. Julury, B. K. et al. A mechanical actuator driven electrochemically by artificial molecular muscles. ACS Nano 3, 291–300 (2009).

    Article  Google Scholar 

  36. Nguyen, T. D. et al. I. Design and optimization of molecular nanovalves based on redox-switchable rotaxanes J. Am. Chem. Soc. 129, 626–634 (2007).

    Article  CAS  Google Scholar 

  37. Collier, C. P. et al. A [2]catenane-based solid state electronically reconfigurable switch. Science 289, 1172–1175 (2000).

    Article  CAS  Google Scholar 

  38. Green, J. E. et al. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445, 414–417 (2007).

    Article  CAS  Google Scholar 

  39. Tseng, H.-R. et al. Redox-controllable amphiphilic [2]rotaxanes. Chem. Eur. J. 10, 155–172 (2004).

    Article  CAS  Google Scholar 

  40. Liu, Y., Flood, A. H. & Stoddart, J. F. Thermally and electrochemically controllable self-complexing molecular switches. J. Am. Chem. Soc. 126, 9150–9151 (2004).

    Article  CAS  Google Scholar 

  41. Anelli, P.-L., Spencer, N. & Stoddart, J. F. A molecular shuttle. J. Am. Chem. Soc. 113, 5131–5133 (1991).

    Article  CAS  Google Scholar 

  42. Coskun, A. et al. A light-gated STOP-GO molecular shuttle. J. Am. Chem. Soc. 131, 2493–2495 (2009).

    Article  CAS  Google Scholar 

  43. Ashton, P. R., Belohradsky, M., Phip, D., Spencer, N. & Stoddart, J. F. The self-assembly of [2]- and [3]rotaxanes by slippage. J. Chem. Soc., Chem. Commun. 1269–1274 (1993).

  44. Kosower, E. M. & Hajdu, J. Pyridinyl diradical pi.-mer. Magnesium iodide complexes. J. Am. Chem. Soc. 93, 2534–2535 (1971).

    Article  CAS  Google Scholar 

  45. Gueder, W., Hünig, S. & Suchy, A. Single and double bridged viologens and intramolecular pimerization of their cation radicals. Tetrahedron 42, 1665–1677 (1986).

    Article  Google Scholar 

  46. Bard, A. J. & Faulkner, L. R. Electrochemical Methods Fundamentals and Applications (John Wiley & Sons, 1980).

    Google Scholar 

  47. Benitez, D., Tkatchouk, E., Yoon, I., Stoddart, J. F. & Goddard, W. A. III. Experimentally-based recommendations of density functionals for predicting properties in mechanically interlocked molecules. J. Am. Chem. Soc. 130, 14928–14929 (2008).

    Article  CAS  Google Scholar 

  48. Truhlar, D. G. Molecular modeling of complex chemical systems. J. Am. Chem. Soc. 130, 16824–16827 (2008).

    Article  CAS  Google Scholar 

  49. Reed, A. E., Weinstock, R. B. & Weinhold, F. Natural-population analysis. J. Chem. Phys. 83, 735–746 (1985).

    Article  CAS  Google Scholar 

  50. Choi, J. W. et al. Ground-state equilibrium thermodynamics and switching kinetics of bistable [2]rotaxanes switched in solution, polymer gels, and molecular electronic devices. Chem. Eur. J. 12, 261–279 (2006).

    Article  CAS  Google Scholar 

  51. Schweiger, A. & Jeschke, G. Principles of Pulse Electron Paramagnetic Resonance (Oxford University Press, 2001).

    Google Scholar 

  52. Zhao, Y.-L., Aprahamian, I., Trabolsi, A., Erina, N. & Stoddart, J. F. Organogel formaton by a cholesterol-stoppered bistable [2]rotaxane and its dumbbell precursor. J. Am. Chem. Soc. 130, 6348–6350 (2008).

    Article  CAS  Google Scholar 

  53. Flood, A. H., Nygaard, S., Laursen, B. W., Jeppesen, J. O. & Stoddart, J. F. Locking down the electronic structure of (monopyrrolo)tetrathiafulvalene in [2]rotaxanes. Org. Lett. 8, 2205–2208 (2006).

    Article  CAS  Google Scholar 

  54. Han, B., Li, Z., Wandlowski, T., Błaszczyk, A. & Mayor, M. Potential-induced redox switching in viologen self-assembled monolayers: An ATR-SEIRAS approach. J. Phys. Chem. C 111, 13855–13863 (2007).

    Article  CAS  Google Scholar 

  55. Aprahamian, I., Olsen, J. C., Trabolsi, A. & Stoddart, J. F. Tetrathiafulvalene radical cation dimerization in a bistable tripodal [4]rotaxane. Chem. Eur. J. 14, 3889–3895 (2008).

    Article  CAS  Google Scholar 

  56. Deng, W. Q., Flood, A. H., Stoddart, J. F. & Goddard III, W. A. An electrochemical color-switchable RGB dye: tristable [2]catenane. J. Am. Chem. Soc. 127, 15994–15995 (2005).

    Article  CAS  Google Scholar 

  57. Ikeda, T. et al. Toward electrochemically controllable tristable three-station [2]catenanes. Chem. Asian J. 2, 76–93 (2007).

    Article  CAS  Google Scholar 

  58. Leigh, D. A., Wong, J. K. Y., Dehez, F. & Zerbetto, F. Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 424, 174–179 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the US Air Force Office of Scientific Research (AFOSR) under their Multidisciplinary University Research Initiative (MURI), award number FA9550-07-1-0534 and by the US National Science Foundation (NSF) under grant numbers CHE-0718928 (M.R.W.) and CHE-0924620 (J.F.S.). M.T.C thanks the Link Foundation for a fellowship. MSC facilities were funded by grants from ARO-DURIP and ONR-DURIP.

Author information

Authors and Affiliations

Authors

Contributions

A.T. and J.F.S. conceived the project and prepared the manuscript. A.T., A.C.F., N.M.K., K.C. and M.E.B. synthesized the different molecules studied in this work. A.C.F. was responsible for electrochemical and spectroelectrochemical studies and the determination of the binding energy. D.C.F. performed the NMR spectroscopic studies. J.C.O. performed preliminary force-field simulations. D.B., E.T., and W.A.G.III performed DFT calculations. M.T.C., R.C., and M.R.W. performed all the EPR measurements. H.A.K. provided all the graphical representations used in this manuscript.

Corresponding author

Correspondence to J. Fraser Stoddart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2005 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trabolsi, A., Khashab, N., Fahrenbach, A. et al. Radically enhanced molecular recognition. Nature Chem 2, 42–49 (2010). https://doi.org/10.1038/nchem.479

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.479

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing