Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-assembling nanoprobes that display off/on 19F nuclear magnetic resonance signals for protein detection and imaging

Abstract

Magnetic resonance imaging (MRI) is one of the most promising techniques for the non-invasive visualization of biomarkers and biologically relevant species, both in vivo and ex vivo. Although 1H MRI with paramagnetic contrast agents, such as Gd3+ complexes and iron oxide, is widely used, it often suffers from low contrast because of the large background signals caused by the abundant distribution of protons in biological samples. Here we report the use of supramolecular organic nanoparticles to detect specific proteins by 19F-based MRI in an off/on mode. In NMR spectroscopy these designed probes are silent when aggregated, but in the presence of a target protein they disassemble to produce a sharp signal. This ‘turn-on’ response allowed us to visualize clearly the protein within live cells by 19F MRI and construct an in-cell inhibitor assay. This recognition-driven disassembly of nanoprobes for a turn-on 19F signal is unprecedented and may extend the use of 19F MRI for specific protein imaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Off/on 19F NMR probes for protein imaging.
Figure 2: Microscopic and spectroscopic characterization of the self-assembled nanoparticles of probe 1.
Figure 3: Turn-on 19F NMR detection of TPS and avidin by probes 3 and 5, respectively.
Figure 4: 19F NMR spectra and magnetic resonance images in RBCs.

Similar content being viewed by others

References

  1. Kiessling, F., Morgenstern, B. & Zhang, C. Contrast agents and applications to assess tumor angiogenesis in vivo by magnetic resonance imaging. Curr. Med. Chem. 14, 77–91 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Perez, J. M., Josephson, L., O'Loughlin, T., Högemann, D. & Weissleder, R. Magnetic relaxation switches capable of sensing molecular interactions. Nature Biotechnol. 20, 816–820 (2002).

    Article  CAS  Google Scholar 

  3. Louie, A. Y. et al. In vivo visualization of gene expression using magnetic resonance imaging. Nature Biotechnol. 18, 321–325 (2000).

    Article  CAS  Google Scholar 

  4. Sosnovik, D. E. & Weissleder, R. Emerging concepts in molecular MRI. Curr. Opin. Biotech. 18, 4–10 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Woods, M., Woessner, D. E. & Sherry A. D. Paramagnetic lanthanide complexes as PARACEST agents for medical imaging. Chem. Soc. Rev. 35, 500–511 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jun, Y., Lee, J-H. & Cheon, J. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew. Chem. Int. Ed. 47, 5122–5135 (2008).

    Article  CAS  Google Scholar 

  7. Danielson, M. A. & Falke, J. J. Use of 19F NMR to probe protein structure and conformational changes. Annu. Rev. Biophys. Biomol. Struct. 25, 163–195 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu, J., Kodibagkar, V. D., Cui, W. & Mason, R. P. 19F: a versatile reporter for non-invasive physiology and pharmacology using magnetic resonance. Curr. Med. Chem. 12, 819–848 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Higuchi, M. et al. 19F and 1H MRI detection of amyloid β plaques in vivo. Nature Neurosci. 8, 527–533 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Yu, J., Liu, L., Kodibagkar, V. D., Cui, W. & Mason, R. P. Synthesis and evaluation of novel enhanced gene reporter molecules: detection of β-galactosidase activity using 19F NMR of trifluoromethylated aryl β-d-garactopyranosides. Bioorg. Med. Chem. 14, 326–333 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Mizukami, S. et al. Paramagnetic relaxation-based 19F MRI probe to detect protease activity. J. Am. Chem. Soc. 130, 794–795 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Grage, S. L. et al. Solid state 19F NMR parameters of fluorine-labeled amino acids. Part II: Aliphatic substituents. J. Magn. Reson. 191, 16–23 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Taylor, P. W., King, R. W. & Burgen, A. S. V. Kinetics of complex formation between human carbonic anhydrases and aromatic sulfonamides. Biochemistry 9, 2638–2645 (1970).

    Article  CAS  PubMed  Google Scholar 

  14. Casini, A. et al. Carbonic anhydrase inhibitors: SAR and X-ray crystallographic study for the interaction of sugar sulfamates/sulfamides with isozymes I, II and IV. Bioorg. Med. Chem. Lett. 13, 841–845 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Talhout, R., Villa, A., Mark, A. E. & Engberts, J. B. F. N. Understanding binding affinity: a combined isothermal titration calorimetry/molecular dynamics study of the binding of a series of hydrophobically modified benzamidinium chloride inhibitors to trypsin. J. Am. Chem. Soc. 125, 10570–10579 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Green, N. M. The use of [14C]biotin for kinetic studies and for assay. Biochem. J. 89, 585–591 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Casey, J. R. et al. Carbonic anhydrase inhibitors. Design of selective, membrane-impermeant inhibitors targeting the human tumor-associated isozyme IX. J. Med. Chem. 47, 2337–2347 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Savariar, E. N., Ghosh, S. González, D. C. & Thayumanavan, S. Disassembly of noncovalent amphiphilic polymers with proteins and utility in pattern sensing. J. Am. Chem. Soc. 130, 5416–5417 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Chazalette, C. et al. Carbonic anhydrase inhibitors. Design of anticonvulsant sulfonamides incorporating indane moieties. Bioorg. Med. Chem. Lett. 14, 5781–5786 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Talhout, R. & Engberts, J. B. F. N. Thermodynamic analysis of binding of p-substituted benzamidines to trypsin. Eur. J. Biochem. 268, 1554–1560 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Finn, F. M., Titus, G., Montibeller, J. A. & Hofmann, K. Hormone-receptor studies with avidin and biotinylinsulin–avidin complexes. J. Biol. Chem. 255, 5742–5746 (1980).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Ashihara (Kyoto University Hospital) for the blood samples, J. Miyake and T. Kunita (Kyoto University) for help with AFM and SEM measurements. Y.T. acknowledges the JSPS Research Fellowships for Young Scientists. This work was partly supported by CK integrated Medical Bio-imaging Project (MEXT) and by CREST (Japan Science and Technology Agency).

Author information

Authors and Affiliations

Authors

Contributions

I.H. conceived the project. Y.T., T.S., S.T. and I.H. designed the experiments. Y.T. performed all the experiments, with help from H.T. and M.S. on 19F NMR measurements. M.N. and T.M. performed the MRI experiments. The manuscript was written by Y.T., S.T. and I.H., and edited by all the co-authors.

Corresponding author

Correspondence to Itaru Hamachi.

Supplementary information

Supplementary information

Supplementary information (PDF 928 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takaoka, Y., Sakamoto, T., Tsukiji, S. et al. Self-assembling nanoprobes that display off/on 19F nuclear magnetic resonance signals for protein detection and imaging. Nature Chem 1, 557–561 (2009). https://doi.org/10.1038/nchem.365

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.365

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing