Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum

Abstract

The classic models of metal electrode–electrolyte interfaces generally focus on either covalent interactions between adsorbates and solid surfaces or on long-range electrolyte–metal electrostatic interactions. Here we demonstrate that these traditional models are insufficient. To understand electrocatalytic trends in the oxygen reduction reaction (ORR), the hydrogen oxidation reaction (HOR) and the oxidation of methanol on platinum surfaces in alkaline electrolytes, non-covalent interactions must be considered. We find that non-covalent interactions between hydrated alkali metal cations M+(H2O)x and adsorbed OH (OHad) species increase in the same order as the hydration energies of the corresponding cations (Li+ >> Na+ > K+ > Cs+) and also correspond to an increase in the concentration of OHad–M+(H2O)x clusters at the interface. These trends are inversely proportional to the activities of the ORR, the HOR and the oxidation of methanol on platinum (Cs+ > K+ > Na+ >> Li+), which suggests that the clusters block the platinum active sites for electrocatalytic reactions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effects of alkali metal cations on CVGs and ORR currents in alkaline solution on Pt(111).
Figure 2: The effect of alkali metal cations on HOR and methanol oxidation reaction currents on Pt(111) in alkaline solutions.
Figure 3: Correlations between catalytic activities and alkali cation hydration energies (ΔHM) for various fuel-cell reactions on extended platinum surfaces and real platinum nanoparticles in alkaline solution.
Figure 4: Proposed models for non-covalent interactions and schematic representation of the double-layer structure.

Similar content being viewed by others

References

  1. Dresselhause, M. S. & Thomas, I. L. Alternative energy technologies. Nature 414, 332–337 (2001).

    Article  Google Scholar 

  2. Steele, B. C. H. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 354–352 (2001).

    Article  Google Scholar 

  3. Markovic, N. M. & Ross, P. N. Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 45, 117–230 (2002).

    Article  CAS  Google Scholar 

  4. Magnussen, O. M. Ordered anion adlayers on metal electrode surfaces. Chem. Rev. 102, 679–725 (2002).

    Article  CAS  Google Scholar 

  5. Hammer, B. & Norskov, J. K. in Chemisorption and Reactivity on Supported Clusters and Thin Films (eds Lambert, R. M. & Pacchioni, G.) 285–351 (Kluwer Academic, 1997).

  6. Mavrikakis, M. Computational methods: A search engine for catalysts. Nature Mater. 5, 847–848 (2006).

    Article  CAS  Google Scholar 

  7. Gileadi, E. Electrode Kinetics for Chemical Engineers and Material Scientists (VCH, 1993).

    Google Scholar 

  8. Tripkovic, D. V., Strmcnik, D., van der Vliet, D., Stamenkovic, V. & Markovic, N. M. The role of anions in surface electrochemistry. Faraday Discuss. 140, 25–40 (2008).

    Article  CAS  Google Scholar 

  9. Conway, B. E. & Timothy, B. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta 47, 3571–3594 (2002).

    Article  CAS  Google Scholar 

  10. Strmcnik, D., Tripkovic, D., van der Vliet, D., Stamenkovic, V. & Markovic, N. M. Adsorption of hydrogen on Pt(111) and Pt(100) surfaces and its role in the HOR. Electrochem. Commun. 10, 1602–1605 (2008).

    Article  CAS  Google Scholar 

  11. Adzic, R. R. in Electrocatalysis (eds Lipkowski, J. & Ross, P. N.) 197–242 (Wiley-VCH, 1998).

  12. Norskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  CAS  Google Scholar 

  13. Korzeniewski, C. in Interfacial Electrochemistry—Theory, Experiments and Applications (ed. Wieckowski, A.) 345–352 (Marcel Dekker, 1999).

  14. Korzeniewski, C. Formaldehyde yields from methanol electrochemical oxidation on platinum. J. Phys. Chem. B, 102, 489–492 (1998).

    Article  CAS  Google Scholar 

  15. Osawa, M. in Advances in Electrochemical Science and Engineering (eds Alkire, R. C., Kolb, D. M., Lipkowski, J. & Ross P. N.) Ch. 8 (Wiley, 2006).

  16. Delaahay, P. Double Layer and Electrode Kinetics (Wiley, 1963).

    Google Scholar 

  17. Fawcett, W. R. in Frontiers in Electrochemistry (eds Lipkowski, J. & Ross, P. N.) 323–366 (Wiley-VCH, 1998).

  18. Frumkin, A. N. Hydrogen overvoltage and the structure of the double layer. Z. Physik. Chem. A164, 121–133 (1933).

    CAS  Google Scholar 

  19. Frumkin, A. N. & Slygin, B. Adsorbed atoms and ions on the surface of a platinum electrode. Acta Physiochem. URSS 819–840 (1936).

  20. Muller-Dethlefs, K. & Hobza, P. Noncovalent interactions: A challenge for experiment and theory. Chem. Rev. 100, 143–167 (2000).

    Article  CAS  Google Scholar 

  21. Miller, D. J. & Lisy, J. M. Hydrated alkali–metal cations: infrared spectroscopy and ab initio calculations of M+(H2O)(x = 2 − 5) Ar cluster ions for M = Li, Na, K, and Cs. J. Am. Chem. Soc. 130, 15381–15392 (2008).

    Article  CAS  Google Scholar 

  22. Miller, D. J. & Lisy, J. M. Entropic effects on hydrated alkali–metal cations: infrared spectroscopy and ab initio calculations of M+(H2O)(x = 2 − 5) cluster ions for M = Li, Na, K, and Cs. J. Am. Chem. Soc. 130, 15393–15404 (2008).

    Article  CAS  Google Scholar 

  23. Feliu, J. M., Valls, M. J., Aldaz, A., Climent, M. A. & Clavilier, J. Alkali metal cations and pH effects on a splitting of the unusual adsorption states of Pt(111) voltammograms in phosphate buffered solutions. J. Electroanal. Chem. 345, 475–481, 1993.

    Article  CAS  Google Scholar 

  24. Garcia, N., Climent, V., Orts, J. M., Feliu, J. M. & Aldaz, A. Effect of pH and alkaline metal cations on the voltammetry of Pt(111) single crystal electrodes in sulfuric acid solutions. Chem. Phys. Chem., 5, 1221–1227 (2004)

    Article  CAS  Google Scholar 

  25. Tarasevich, M. R. & Vilinskaya, V. S. Parallel and consecutive reaction steps of oxygen and hydrogen peroxide VII: effect of chemisorbed oxygen on the electrooxidation of molecular oxygen at palladium. Electrochimiya 9, 301–398 (1973).

    Google Scholar 

  26. Markovic, N. M., Adzic, R. R., Cahan, B.D. & Yeager, E. Structural effects in electrocatalysis: oxygen reduction on platinum low index single-crystal surfaces. J. Electroanal. Chem. 377, 249–259 (1994).

    Article  CAS  Google Scholar 

  27. Markovic, N. M., Gasteiger, H. A. & Ross, P. N. Oxygen reduction on platinum low-index single-crystal surfaces in sulphuric acid solution: rotating ring-Pt(hkl) disk studies. J. Phys. Chem. 99, 3411–3415 (1995).

    Article  CAS  Google Scholar 

  28. Markovic, N. M., Gasteiger, H. A. & Ross, P. N. Oxygen reduction on platinum low-index single-crystal surfaces in alkaline solution: rotating ring disk Pt(hkl) studies. J. Phys. Chem. 100, 6715–6721 (1996).

    Article  Google Scholar 

  29. Markovic, N. M., Sarraf, S. T., Gasteiger, H. A. & Ross, P. N. Hydrogen electrochemistry on low-index single-crystal surfaces in alkaline solution. J. Chem. Soc. Faraday Trans. 92, 3719–3725 (1996).

    Article  CAS  Google Scholar 

  30. Markovic, N. M., Grgur, B. N. & Ross, P. N. Jr Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions. J. Phys. Chem. B 101, 5405–5413 (1997).

    Article  CAS  Google Scholar 

  31. Markovic, N. M. & Ross, P. N. The effect of specific adsorption of ions and underpotential deposition of copper on the electro-oxidation of methanol on platinum single-crystal surfaces. J. Electroanal. Chem. 330, 499–520 (1992).

    Article  CAS  Google Scholar 

  32. Tripkovic, A. V. et al. Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions. Electrochim. Acta 47, 3707–3714 (2002).

    Article  CAS  Google Scholar 

  33. Markovic, N. M. & Ross, P. N. Jr in Interfacial Electrochemistry—Theory, Experiments and Applications (ed. Wieckowski, A) 821–841 (Marcel Dekker, 1999).

  34. Nagy, Z., Yonco, R. M. & Hung, N. C. Kinetics of the ferrous–ferric electrode reaction in the absence of chloride catalysis. J. Electrochem. Soc. 134, 2215–2220 (1987).

    Article  Google Scholar 

  35. Wandlowski, T. & de Levie, R. Double layer dynamics in the adsorption of tetrabutylammonium ions at the mercury–water interface Part 4. The reduction of hexammine–cobalt(iii) through tetrabutylammonium films. J. Electroanal. Chem., 380, 201–207 (1995).

    Article  Google Scholar 

  36. Strmcnik, D. et al. Relationship between the surface coverage of spectator species and the rate of the electrochemical reactions. J. Phys. Chem. C 111, 18672–18678 (2007).

    Article  CAS  Google Scholar 

  37. Strmcnik, D. S. et al. Unique activity of platinum adislands in the CO electrooxidation reaction. J. Am. Chem. Soc. 130, 15332–15339 (2008).

    Article  CAS  Google Scholar 

  38. Schmidt, T. J. et al. The electrocatalytic activity of PtRu alloy colloids for CO and CO/H2 electrooxidation: stripping voltammetry and rotating disk measurements. Langmuir 13, 2591–2595 (1997).

    Article  CAS  Google Scholar 

  39. Mayrhofer, K. J. J. et al. The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electrocatalysis. J. Phys. Chem. B 109, 14433–14440 (2005).

    Article  CAS  Google Scholar 

  40. Hammer, B., Hansen, L. B. & Norskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).

    Article  Google Scholar 

  41. Stamenkovic, V. et al. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. 45, 2897–2901 (2006).

    Article  CAS  Google Scholar 

  42. Bengtsson, L Dipole correction for surface super cell calculations. Phys. Rev. B 59, 12301–12304 (1999).

    Article  CAS  Google Scholar 

  43. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized Eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).

    Article  CAS  Google Scholar 

  44. Chakarova-Kack, S. D., Schroder, E., Lundqvist, B. I. & Langreth, D. C. Application of van der Waals density functional to an extended system: adsorption of benzene and naphthalene on graphite. Phys. Rev. Lett. 96, 146107/1–146107/4, (2006).

    Article  CAS  Google Scholar 

  45. Linic, S. & Barteau, M. A. On the mechanism of Cs promotion in ethylene epoxidation on Ag. J. Am. Chem. Soc. 126, 8086–8087 (2004).

    Article  CAS  Google Scholar 

  46. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work, including use of the Center for Nanoscale Materials, was supported by the University of Chicago and Argonne, and the US Department of Energy, Office of Science, Office of Basic Energy Sciences. We acknowledge computer time at the Laboratory Computing Resource Center at Argonne National Laboratory, the National Energy Research Scientific Computing Center and the Molecular Science Computing Facility at Pacific Northwest National Laboratory. K.K. acknowledges financial support from Toyota Central R&D Labs.

Author information

Authors and Affiliations

Authors

Contributions

D.S. and N.M. designed the experiments, D.S., K.K. and D.V. performed the experiments, J.G. performed the DFT calculations, D.S., J.G., V.S. and N.M. discussed the results and N.M. wrote the paper.

Corresponding author

Correspondence to N. M. Marković.

Supplementary information

Supplementary information

Supplementary information (PDF 613 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strmcnik, D., Kodama, K., van der Vliet, D. et al. The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nature Chem 1, 466–472 (2009). https://doi.org/10.1038/nchem.330

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.330

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing