Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Enantioselective protonation

Abstract

Enantioselective protonation is a common process in biosynthetic sequences. The decarboxylase and esterase enzymes that effect this valuable transformation are able to control both the steric environment around the proton acceptor (typically an enolate) and the proton donor (typically a thiol). Recently, several chemical methods for achieving enantioselective protonation have been developed by exploiting various means of enantiocontrol in different mechanisms. These laboratory transformations have proved useful for the preparation of a number of valuable organic compounds. Here, we review recent reports of enantioselective protonations, classifying them according to mechanism, and discuss how a deeper understanding of the processes can lead to improved methods for effecting this most fundamental method of obtaining enantiopure compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Enantioselective tautomerization of an isolated enol.
Figure 2: Enzyme-catalysed enantioselective protonation reactions.
Figure 3: Enantioselective protonations by means of stoichiometric chiral Brønsted acids.
Figure 4: Enantioselective protonations by means of catalytic chiral Brønsted acids.
Figure 5: Enantioselective protonations by means of catalytic chiral Brønsted acids.
Figure 6: The use of nucleophilic heterocycle catalysts to generate chiral proton acceptors.
Figure 7: Conjugate addition/protonation sequences catalysed by chiral metal complexes.
Figure 8: Transition metal-catalysed enantioselective protonation reactions by means of chiral metal enolates.
Figure 9: Radical conjugate addition followed by enantioselective H-atom transfer.

Similar content being viewed by others

References

  1. Mohr, J. T. Krout, M. R. & Stoltz, B. M. Natural products as inspiration for the development of asymmetric catalysis. Nature 455, 323–332 (2008).

    Article  CAS  Google Scholar 

  2. Fehr, C. Enantioselective protonation of enolates and enols. Angew. Chem. Int. Ed. Engl. 35, 2566–2587 (1996).

    Article  Google Scholar 

  3. Yanagisawa, A., Ishihara, K. & Yamamoto, H. Asymmetric protonations of enol derivatives. Synlett 411–420 (1997).

  4. Eames, J. & Weerasooriya, N. Recent advances into the enantioselective protonation of protostereogenic enol derivatives. Tetrahedron 12, 1–24 (2001).

    Article  CAS  Google Scholar 

  5. Duhamel, L., Duhamel, P. & Plaquevent, J.-C. Enantioselective protonations: Fundamental insights and new concepts. Tetrahedron 15, 3653–3691 (2004).

    Article  CAS  Google Scholar 

  6. Yanagisawa, A. & Yamamoto, H. in Comprehensive Asymmetric Catalysis Vol. III (eds Jacobsen, E. N., Pfaltz, A. & Yamamoto, H.) 1295–1306 (Springer, 1999).

    Book  Google Scholar 

  7. Yanagisawa, A. & Yamamoto, H. in Comprehensive Asymmetric Catalysis, Suppl. 2 (eds Jacobsen, E. N., Pfaltz, A. & Yamamoto, H.) 125–132 (Springer, 2004).

    Google Scholar 

  8. Blanchet, J., Baudoux, J., Amere, M., Lasne, M.-C. & Rouden, J. Asymmetric malonic and acetoacetic acid syntheses – a century of enantioselective decarboxylative protonations. Eur. J. Org. Chem. 5493–5506 (2008).

  9. Fehr, C. Catalytic enantioselective tauromerization of isolated enols. Angew. Chem. Int. Ed. 46, 7119–7121 (2007).

    Article  CAS  Google Scholar 

  10. Miyamoto, K. & Ohta, H. Purification and properties of a novel arylmalonate decarboxylase from Alcaligenes bronchisepticus KU 1201. Eur. J. Biochem. 210, 475–481 (1992).

    Article  CAS  Google Scholar 

  11. Matoishi, K., Ueda, M., Miyamoto, K. & Ohta, H. Mechanism of asymmetric decarboxylation of α-aryl-α-methylmalonate catalyzed by arylmalonate decarboxylase originated from Alcaligenes bronchisepticus. J. Mol. Catal. B 27, 161–168 (2004).

    Article  CAS  Google Scholar 

  12. Hansch, C., Leo, A. & Taft, R. W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 91, 165–195 (1991).

    Article  CAS  Google Scholar 

  13. Nakasako, M. et al. Crystallization and preliminary X-ray diffraction experiments of arylmalonate decarboxylase from Alcaligenes bronchisepticus. Acta Crystallogr. 64, 610–613 (2008).

    Article  CAS  Google Scholar 

  14. Kuettner, E. B., Keim, A., Kircher, M., Rosmus, S. & Strater, N. Active site mobility revealed by the crystal structure of arylmalonate decarboxylase from Bortadella bronchiseptica. J. Mol. Biol. 377, 386–394 (2008).

    Article  CAS  Google Scholar 

  15. Terao, Y., Ijima, Y., Miyamoto, K. & Ohta, H. Inversion of the enantioselectivity of arylmalonate decarboxylase via site-directed mutation based on the proposed reaction mechanism. J. Mol. Catal. B 45, 15–20 (2007).

    Article  CAS  Google Scholar 

  16. Ijima, Y., Matoishi, K., Terao, Y., Doi, N. Yanagawa, H. & Ohta, H. Inversion of the enantioselectivity of asymmetric biocatalytic decarboxylation by site-directed mutagenesis based on the reaction mechanism. Chem. Commun. 877–879 (2005).

  17. Terao, Y., Miyamomoto, K. & Ohta, H. Improvement of the activity of arylmalonate decarboxylase by random mutagenesis. Appl. Microbiol. Biotechnol. 73, 647–653 (2006).

    Article  CAS  Google Scholar 

  18. Miyamoto, K., Hirokawa, S. & Ohta, H. Conversion of α-methyltropate to optically active α-phenylpropionate by tropate-degrading Rhodococcus sp. KU1314. J. Mol. Catal. B: Enzym. 46, 14–19 (2007).

    Article  CAS  Google Scholar 

  19. Matsumoto, K., Tsutsumi, S., Ihori, T. & Ohta, H. Enzyme-mediated enantioface-differentiating hydrolysis of α-substituted cycloalkanone enol esters. J. Am. Chem. Soc. 112, 9614–9619 (1990).

    Article  CAS  Google Scholar 

  20. Hirata, T., Shimoda, K. & Kawano, T. Asymmetric hydrolysis of enol esters with two esterases from Marchantia polymorpha. Tetrahedron 11, 1063–1066 (2000).

    Article  CAS  Google Scholar 

  21. Sakai, T., Matsuda, A., Tanaka, Y., Korenaga, T. & Ema, T. The effect of temperature on the lipase-catalyzed asymmetric protonation on 1-acetoxy-2-methylcyclohexene giving (R)-2-methylcyclohexanone. Tetrahedron 15, 1929–1932 (2004).

    Article  CAS  Google Scholar 

  22. Vedejs, E., Kruger, A. W. & Suna, E. Enantioselective enolate protonation: Matching chiral aniline and substrate acidity. J. Org. Chem. 64, 7863–7870 (1999).

    Article  CAS  Google Scholar 

  23. Kim, B. M., Kim, H., Kim, W., Im, K. Y. & Park, J. K. Asymmetric protonation of ketone enolates using chiral β-hydroxyethers: Acidity-tuned enantioselectivity. J. Org. Chem. 69, 5104–5107 (2004).

    Article  CAS  Google Scholar 

  24. Boyd, E. et al. Reversal of enantioselectivity on protonation of enol(ate)s derived from 2-methyl-1-tetralone using C2-symmetric sulfonamides. Tetrahedron Lett. 45, 9465–9468 (2004).

    Article  CAS  Google Scholar 

  25. Coumbarides, G. S., Eames, J., Ghilagaber, S. & Suggate, M. J. Investigations into the enantioselective C-protonation of protostereogenic enolate(s) derived from N, N′-diisopropyl-2-phenylpropanamide using suicide C-based proton sources. Tetrahedron Lett. 45, 9469–9474 (2004).

    Article  CAS  Google Scholar 

  26. Coumbarides, G. S. et al. Enantioselective protonation of a lithium enolate derived from 2-methyl-1-tetralone using chiral sulfonamides. Bull. Chem. Soc. Jpn 78, 906–909 (2005).

    Article  CAS  Google Scholar 

  27. Amere, M., Lasne, M.-C. & Rouden, J. Highly enantioselective decarboxylative protonation of α-aminomalonates mediated by thiourea Cinchona alkaloid derivatives: Access to both enantiomers of cyclic and acyclic α-aminoacids. Org. Lett. 9, 2621–2624 (2007).

    Article  CAS  Google Scholar 

  28. Seitz, T. et al. Organocatalyzed route to enantioenriched pipecolic esters: Decarboxylation of an aminomalonate hemiester. Tetrahedron 62, 6155–6165 (2006).

    Article  CAS  Google Scholar 

  29. Carbery, D. R. & Donohoe, T. J. Enantiopure oxazolidinones as chiral acids in the asymmetric protonation of N-Boc pyrrole derived enolates. Chem. Commun. 722–723 (2004).

  30. Donohoe, T. J. et al. Enantioselective partial reduction of 2,5-disubstituted pyrroles via a chiral protonation approach. Org. Lett. 6, 3055–3058 (2004).

    Article  CAS  Google Scholar 

  31. Rueping, M., Theissmann, T., Raja, S. & Bats, J. W. Asymmetric counterion pair catalysis: An enantioselective Brønsted acid-catalyzed protonation. Adv. Synth. Catal. 350, 1001–1006 (2008).

    Article  CAS  Google Scholar 

  32. Cheon, C. H. & Yamamoto, H. A Brønsted acid catalyst for the enantioselective protonation reaction. J. Am. Chem. Soc. 130, 9246–9247 (2008).

    Article  CAS  Google Scholar 

  33. Mitsuhashi, K., Ito, R., Arai, T. & Yanagisawa, A. Catalytic asymmetric protonation of lithium enolates using amino acid derivatives as chiral proton sources. Org. Lett. 8, 1721–1724 (2006).

    Article  CAS  Google Scholar 

  34. Yanagisawa, A., Touge, T. & Arai, T. Enantioselective protonation of silyl enolates catalyzed by a Binap·AgF complex. Angew. Chem. Int. Ed. 44, 1546–1548 (2005).

    Article  CAS  Google Scholar 

  35. Yanagisawa, A., Touge, T. & Arai, T. Asymetric protonation of silyl enolates catalyzed by chiral phosphine-silver(I) complexes. Pure Appl. Chem. 78, 519–523 (2006).

    Article  CAS  Google Scholar 

  36. Poisson, T. et al. Organocatalytic enantioselective protonation of silyl enolates mediated by Cinchona alkaloids and a latent source of HF. Angew. Chem. Int. Ed. 46, 7090–7093 (2007).

    Article  CAS  Google Scholar 

  37. Becker, H. & Sharpless, K. B. A new ligand class for the asymmetric dihydroxylation of olefins. Angew. Chem. Int. Ed. Engl. 35, 448–451 (1996).

    Article  CAS  Google Scholar 

  38. Poisson, T., Oudeyer, S., Dalla, V., Marsais, F. & Levacher, V. Straightforward organocatalytic enantioselective protonation of silyl enolates by means of Cinchona alkaloids and carbxylic acids. Synlett 2447–2450 (2008).

  39. Wang, Y., Liu, X. & Deng, L. Dual-function Cinchona alkaloid catalysis: Catalytic asymmetric tandem conjugate addition–protonation for the direct creation of nonadjacent stereocenters. J. Am. Chem. Soc. 128, 3928–3930 (2006).

    Article  CAS  Google Scholar 

  40. Wang, B., Wu, F., Wang, Y., Liu, X. & Deng, L. Control of diastereoselectivity in tandem asymmetric reactions generating nonadjacent stereocenters with bifunctional catalysis by Cinchona alkaloids. J. Am. Chem. Soc. 129, 768–769 (2007).

    Article  CAS  Google Scholar 

  41. Li, B.-J. et al. Asymmetric Michael addition of arylthiols to α,β-unsaturated carbonyl compounds catalyzed by bifunctional organocatalysts. Synlett 603–606 (2005).

  42. Leow, D., Lin, S., Chittimalla, S. K., Fu, X. & Tan, C.-H. Enantioselective protonation catalyzed by a chiral bicyclic guanidine derivative. Angew. Chem. Int. Ed. 47, 5641–5645 (2008).

    Article  CAS  Google Scholar 

  43. Hénin, F., Muzart, J., Pete, J.-P., M'boungou- M'passi, A. & Rau, H. Enantioselective protonation of a simple enol: Aminoalcohol-catalyzed ketonization of a photochemically produced 2-methylinden-3-ol. Angew. Chem., Int. Ed. Engl. 30, 416–418 (1991).

    Article  Google Scholar 

  44. Hénin, F., M'boungou- M'passi, A., Muzart, J. & Pete, J.-P. Photoreactivity of α-tetrasubstituted arylketones: Production and asymmetric tautomerization of arylenols. Tetrahedron 50, 2849–2864 (1994).

    Article  Google Scholar 

  45. Mohr, J. T., Ebner, D. C. & Stoltz, B. M. Catalytic enantioselective stereoablative reactions: an unexploited approach to enantioselective catalysis. Org. Biomol. Chem. 5, 3571–3576 (2007).

    Article  CAS  Google Scholar 

  46. Dai, X., Nakai, T., Romero, J. A. C. & Fu, G. C. Enantioselective synthesis of protected amines by the catalytic asymmetric addition of hydrazoic acid to ketenes. Angew. Chem. Int. Ed. 46, 4367–4369 (2007).

    Article  CAS  Google Scholar 

  47. Denmark, S. E. & Beutner, G. L. Lewis base catalysis in organic synthesis. Angew. Chem. Int. Ed. 47, 1560–1638 (2008).

    Article  CAS  Google Scholar 

  48. Hodous, B. L. & Fu, G. C. Enantioselective addition of amines to ketenes catalyzed by a planar-chiral derivative of PPY: Possible intervention of chiral Brønsted-acid catalysis. J. Am. Chem. Soc. 124, 10006–10007 (2002).

    Article  CAS  Google Scholar 

  49. Girard, C. & Kagan, H. B. Nonlinear effects in asymmetric synthesis and stereoselective reactions: Ten years of investigation. Angew. Chem. Int. Ed. 37, 2922–2959 (1998).

    Article  Google Scholar 

  50. Hodous, B. L., Ruble, J. C. & Fu, G. C. Enantioselective addition of alcohols to ketenes catalyzed by a planar-chiral azaferrocene: Catalytic asymmetric synthesis of arylpropionic acids. J. Am. Chem. Soc. 121, 2637–2638 (1999).

    Article  CAS  Google Scholar 

  51. Wiskur, S. L. & Fu, G. C. Catalytic asymmetric synthesis of esters from ketenes. J. Am. Chem. Soc. 127, 6176–6177 (2005).

    Article  CAS  Google Scholar 

  52. Schaefer, C. & Fu, G. C. Catalytic asymmetric couplings of ketones with aldehydes to generate enol esters. Angew. Chem. Int. Ed. 44, 4606–4608 (2005).

    Article  CAS  Google Scholar 

  53. Reynolds, N. T. & Rovis, T. Enantioselective protonation of catalytically generated chiral enolates as an approach to the synthesis of α-chloroesters. J. Am. Chem. Soc. 127, 16406–16407 (2005).

    Article  CAS  Google Scholar 

  54. Maki, B. E., Chan, A. & Scheidt, K. A. Protonation of homoenolate equivalents generated by N-heterocyclic carbenes. Synthesis 1306–1315 (2008).

  55. Moss, R. J., Wadsworth, K. J., Chapman, C. J. & Frost, C. G. Rhodium catalysed tandem conjugate addition-protonation: An enantioselective synthesis of 2-substituted succinic esters. Chem. Commun. 1984–1985 (2004).

  56. Hargrave, J. D., Herbert, J., Bish, G. & Frost, C. G. Rhodium-catalysed addition of organotrialkoxysilanes to α-substituted acrylic esters. Org. Biomol. Chem. 4, 3235–3241 (2006).

    Article  CAS  Google Scholar 

  57. Frost, C. G. et al. Rhodium-catalyzed conjugate addition-enantioselective protonation: The synthesis of α,α′-dibenzyl ethers. Org. Lett. 9, 2119–2122 (2007).

    Article  CAS  Google Scholar 

  58. Sibi, M. P., Tatamidani, H. & Patil, K. Enantioselective rhodium enolate protonations. A new methodology for the synthesis of β2-amino acids. Org. Lett. 7, 2571–2573 (2005).

    Article  CAS  Google Scholar 

  59. Nishimura, T., Hirabayashi, S., Yasuhara, Y. & Hayashi, T. Rhodium-catalyzed asymmetric hydroarylation of diphenylphosphinylallenes with arylboronic acids. J. Am. Chem. Soc. 128, 2556–2557 (2006).

    Article  CAS  Google Scholar 

  60. Hamashima, Y., Somei, H., Shimura, Y., Tamura, T. & Sodeoka, M. Amine-salt-controlled, catalytic asymmetric conjugate addition of various amines and asymmetric protonation. Org. Lett. 6, 1861–1864 (2004).

    Article  CAS  Google Scholar 

  61. Navarre, L., Darses, S. & Genet, J.-P. Tandem 1, 4-addition/enantioselective protonation catalyzed by rhodium complexes: Efficient access to α-amino acids. Angew. Chem. Int. Ed. 43, 719–723 (2004).

    Article  CAS  Google Scholar 

  62. Navarre, L., Martinez, R., Genet, J.-P. & Darses, S. Access to enantioenriched α-amino esters via rhodium-catalyzed 1,4-addition/enantioselective protonation. J. Am. Chem. Soc. 130, 6159–6169 (2008).

    Article  CAS  Google Scholar 

  63. Sibi, M. P., Coulomb, J. & Stanley, L. M. Enantioselective enolate protonations: Friedel–Crafts reactions with α-substituted acrylates. Angew. Chem. Int. Ed. 47, 9913–9915 (2008).

    Article  CAS  Google Scholar 

  64. Habermas, K. L., Denmark, S. E. & Jones, T. K. The Nazarov cyclization. Org. React. 45, 1–158 (1994).

    CAS  Google Scholar 

  65. Tius, M. Some new Nazarov chemistry. Eur. J. Org. Chem. 2193–2206 (2005).

  66. Pellissier, H. Recent developments in the Nazarov process. Tetrahedron 61, 6479–6517 (2005).

    Article  CAS  Google Scholar 

  67. Frontier, A. J. & Collison, C. The Nazarov cyclization in organic synthesis. Recent advances. Tetrahedron 61, 7577–7606 (2005).

    Article  CAS  Google Scholar 

  68. Liang, G., Gradl, S. N. & Trauner, D. Efficient Nazarov cyclizations of 2-alkoxy-1,4-pentadien-3-ones. Org. Lett. 5, 4931–4934 (2003).

    Article  CAS  Google Scholar 

  69. Aggarwal, V. K. & Belfield, A. J. Catalytic asymmetric Nazarov reactions promoted by chiral Lewis acid complexes. Org. Lett. 5, 5075–5078 (2003).

    Article  CAS  Google Scholar 

  70. Liang, G. & Trauner, D. Enantioselective Nazarov reactions through catalytic asymmetric proton transfer. J. Am. Chem. Soc. 126, 9544–9545 (2004).

    Article  CAS  Google Scholar 

  71. Rueping, M., Ieawsuwan, W., Antonchick, A. P. & Nachtsheim, B. J. Chiral Brønsted acids in the catalytic asymmetric Nazarov cyclization—The first enantioselective organocatalytic electrocyclic reaction. Angew. Chem. Int. Ed. 46, 2097–2100 (2007).

    Article  CAS  Google Scholar 

  72. Nie, J., Zhu, H.-W., Cui, H.-F., Hua, M.-Q. & Ma, J.-A. Catalytic stereoselective synthesis of highly substituted indanones via tandem Nazarov cyclization and electrophilic fluorination trapping. Org. Lett. 9, 3053–3056 (2007).

    Article  CAS  Google Scholar 

  73. Walz, I. & Togni, A. Ni(II)-catalyzed enantioselective Nazarov cyclizations. Chem. Commun. 4315–4317 (2008).

  74. Rueping, M. & Ieawsuwan, W. A catalytic asymmetric electrocyclization-protonation reaction. Adv. Synth. Catal. 351, 78–84 (2009).

    Article  CAS  Google Scholar 

  75. Jamal Aboulhoda, S. et al. Production of optically active ketones by a palladium-induced cascade reaction from racemic β-ketoesters. Tetrahedron 5, 1321–1326 (1994).

    Article  Google Scholar 

  76. Detalle, J.-F., Riahi, A., Steinmetz, V., Hénin, F. & Muzart, J. Mechanistic insights into the palladium-induced domino reaction leading to ketones from benzyl β-ketoesters: First characterization of the enol as an intermediate. J. Org. Chem. 69, 6528–6532 (2004).

    Article  CAS  Google Scholar 

  77. Kukula, P., Matousek, V., Mallat, T. & Baiker, A. Structural effects in the Pd-induced enantioselective deprotection–decarboxylation of β-ketoesters. Tetrahedron 18, 2859–2868 (2007).

    Article  CAS  Google Scholar 

  78. Kukula, P., Matousek, V., Mallat, T. & Baiker, A. Enantioselective decarboxylation of β-keto esters with Pd/amino alcohol systems: Successive metal catalysis and organocatalysis. Chem. Eur. J. 14, 2699–2708 (2008).

    Article  CAS  Google Scholar 

  79. Mohr, J. T., Nishimata, T., Behenna, D. C. & Stoltz, B. M. Catalytic enantioselective decarboxylative protonation. J. Am. Chem. Soc. 128, 11348–11349 (2006).

    Article  CAS  Google Scholar 

  80. Behenna, D. C. & Stoltz, B. M. The enantioselective Tsuji allylation. J. Am. Chem. Soc. 126, 15044–15045 (2004).

    Article  CAS  Google Scholar 

  81. Mohr, J. T., Behenna, D. C., Harned, A. M. & Stoltz, B. M. Deracemization of quaternary stereocenters by Pd-catalyzed enantioconvergent decarboxylative allylation of racemic β-ketoesters. Angew. Chem. Int. Ed. 44, 6924–6927 (2005).

    Article  CAS  Google Scholar 

  82. Mohr, J. T. & Stoltz, B. M. Enantioselective Tsuji allylations. Chem.–Asian J. 2, 1476–1491 (2007).

    Article  CAS  Google Scholar 

  83. Seto, M., Roizen, J. L. & Stoltz, B. M. Catalytic enantioselective alkylation of substituted dioxanone enol ethers: ready access to C(α)-hydroxyketones, acids, and esters. Angew. Chem. Int. Ed. 47, 6873–6876 (2008).

    Article  CAS  Google Scholar 

  84. Marinescu, S. C., Nishimata, T., Mohr, J. T. & Stoltz, B. M. Homogeneous Pd-catalyzed enantioselective decarboxylative protonation. Org. Lett. 10, 1039–1042 (2008).

    Article  CAS  Google Scholar 

  85. Keith, J. A. et al. The inner-sphere process in the enantioselective Tsuji allylation reaction with (S)-t-Bu-phosphinooxazoline (PHOX) ligands. J. Am. Chem. Soc. 129, 11876–11877 (2007).

    Article  CAS  Google Scholar 

  86. Morita, M. et al. Two methods for catalytic generation of reactive enolates promoted by a chiral poly Gd complex: Application to catalytic enantioselective protonation reactions. J. Am. Chem. Soc. 131, 3858–3859 (2009).

    Article  CAS  Google Scholar 

  87. Sibi, M. P., Asano, Y. & Sausker, J. B. Enantioselective hydrogen atom transfer reactions: Synthesis of N-acyl-α-amino acid esters. Angew. Chem. Int. Ed. 40, 1293–1296 (2001).

    Article  CAS  Google Scholar 

  88. Sibi, M. P. & Patil, K. Enantioselective hydrogen atom transfer reactions: A new methodology for the synthesis of β2-amino acids. Angew. Chem. Int. Ed. 43, 1235–1238 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Institutes of Health, National Institute of General Medical Sciences (grant number R01GM080269<0x2011>01), Eli Lilly (predoctoral fellowship to J.T.M.), Amgen, Abbott Laboratories, Boehringer Ingelheim, Merck, Bristol-Myers Squibb and the California Institute of Technology for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian M. Stoltz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohr, J., Hong, A. & Stoltz, B. Enantioselective protonation. Nature Chem 1, 359–369 (2009). https://doi.org/10.1038/nchem.297

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.297

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing