Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Assembly of a biocompatible triazole-linked gene by one-pot click-DNA ligation

Abstract

The chemical synthesis of oligonucleotides and their enzyme-mediated assembly into genes and genomes has significantly advanced multiple scientific disciplines. However, these approaches are not without their shortcomings; enzymatic amplification and ligation of oligonucleotides into genes and genomes makes automation challenging, and site-specific incorporation of epigenetic information and/or modified bases into large constructs is not feasible. Here we present a fully chemical one-pot method for the assembly of oligonucleotides into a gene by click-DNA ligation. We synthesize the 335 base-pair gene that encodes the green fluorescent protein iLOV from ten functionalized oligonucleotides that contain 5ʹ-azide and 3ʹ-alkyne units. The resulting click-linked iLOV gene contains eight triazoles at the sites of chemical ligation, and yet is fully biocompatible; it is replicated by DNA polymerases in vitro and encodes a functional iLOV protein in Escherichia coli. We demonstrate the power and potential of our one-pot gene-assembly method by preparing an epigenetically modified variant of the iLOV gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: One-pot gene synthesis by click-DNA ligation.
Figure 2: Synthesis of alkyne-modified dC and loading onto a solid support in preparation for oligonucleotide synthesis.
Figure 3: Characterization of the click-linked iLOV gene.
Figure 4: Assembly of the click-ligated iLOV plasmid.
Figure 5: Biocompatibility of click-linked iLOV in E. coli cells.
Figure 6: Click-assembly and characterization of epigenetically modified iLOV.

Similar content being viewed by others

References

  1. de Kok, S. et al. Rapid and reliable DNA assembly via ligase cycling reaction. ACS Synth. Biol. 3, 97–106 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Hutchison, C. A. III et al. Design and synthesis of a minimal bacterial genome. Science 351, aad6253 (2016).

    Article  PubMed  Google Scholar 

  3. Kosuri, S. & Church, G. M. Large-scale de novo DNA synthesis: technologies and applications. Nat. Methods 11, 499–507 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Smith, H. O., Hutchison, C. A. III, Pfannkoch, C. & Venter, J. C. Generating a synthetic genome by whole genome assembly: φX174 bacteriophage from synthetic oligonucleotides. Proc. Natl Acad. Sci. USA 100, 15440–15445 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. LeProust, E. M. et al. Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process. Nucleic Acids Res. 38, 2522–2540 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hughes, R. A., Miklos, A. E. & Ellington, A. D. Gene synthesis: methods and applications. Methods Enzymol. 498, 277–309 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Czar, M. J., Anderson, J. C., Bader, J. S. & Peccoud, J. Gene synthesis demystified. Trends Biotechnol. 27, 63–72 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Gao, X., Yo, P., Keith, A., Ragan, T. J. & Harris, T. K. Thermodynamically balanced inside-out (TBIO) PCR-based gene synthesis: a novel method of primer design for high-fidelity assembly of longer gene sequences. Nucleic Acids Res. 31, e143 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Stemmer, W. P., Crameri, A., Ha, K. D., Brennan, T. M. & Heyneker, H. L. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164, 49–53 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Gibson, D. G. et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Boeke, J. D. et al. GENOME ENGINEERING. The genome project-write. Science 353, 126–127 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Micklefield, J. Backbone modification of nucleic acids: synthesis, structure and therapeutic applications. Curr. Med. Chem. 8, 1157–1179 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Kresse, J., Nagpal, K. L., Nagyvary, J. & Uchic, J. T. The use of S-2-cyanoethyl phosphorothioate in the preparation of oligo 5ʹ-deoxy-5ʹ-thiothymidylates. Nucleic Acids Res. 2, 1–9 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu, Y. & Kool, E. T. A novel 5ʹ-iodonucleoside allows efficient nonenzymatic ligation of single-stranded and duplex DNAs. Tetrahedron Lett. 38, 5595–5598 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, J. & Taylor, J. S. Template-directed photoligation of oligodeoxyribonucleotides via 4-thiothymidine. Nucleic Acids Res. 26, 3300–3304 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hansen, D. J., Manuguerra, I., Kjelstrup, M. B. & Gothelf, K. V. Synthesis, dynamic combinatorial chemistry, and PCR amplification of 3ʹ-5ʹ and 3ʹ-6ʹ disulfide-linked oligonucleotides. Angew. Chem. Int. Ed. 53, 14415–14418 (2014).

    Article  CAS  Google Scholar 

  17. Xu, Y. & Kool, E. T. Chemical and enzymatic properties of bridging 5ʹ-S-phosphorothioester linkages in DNA. Nucleic Acids Res. 26, 3159–3164 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cai, J., Li, X., Yue, X. & Taylor, J. S. Nucleic acid-triggered fluorescent probe activation by the Staudinger reaction. J. Am. Chem. Soc. 126, 16324–16325 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Li, X. & Liu, D. R. DNA-templated organic synthesis: nature's strategy for controlling chemical reactivity applied to synthetic molecules. Angew. Chem. Int. Ed. 43, 4848–4870 (2004).

    Article  CAS  Google Scholar 

  20. Roloff, A. & Seitz, O. Bioorthogonal reactions challenged: DNA templated native chemical ligation during PCR. Chem. Sci. 4, 432–436 (2013).

    Article  CAS  Google Scholar 

  21. Shibata, A. et al. Very rapid DNA-templated reaction for efficient signal amplification and its steady-state kinetic analysis of the turnover cycle. J. Am. Chem. Soc. 135, 14172–14178 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. El-Sagheer, A. H., Sanzone, A. P., Gao, R., Tavassoli, A. & Brown, T. Biocompatible artificial DNA linker that is read through by DNA polymerases and is functional in Escherichia coli. Proc. Natl Acad. Sci. USA 108, 11338–11343 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Litovchick, A. et al. Encoded library synthesis using chemical ligation and the discovery of sEH inhibitors from a 334-million member library. Sci. Rep. 5, 10916 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lucas, R., Elchinger, P. H., Faugeras, P. A. & Zerrouki, R. Pyrimidine–purine and pyrimidine heterodinucleosides synthesis containing a triazole linkage. Nucleosides Nucleotides Nucleic Acids 29, 168–177 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Lucas, R. et al. Microwave-assisted synthesis of a triazole-linked 3ʹ-5ʹ dithymidine using click chemistry. Tetrahedron Lett. 49, 1004–1007 (2008).

    Article  CAS  Google Scholar 

  26. Lucas, R., Zerrouki, R., Granet, R., Krausz, P. & Champavier, Y. A rapid efficient microwave-assisted synthesis of a 3ʹ,5ʹ-pentathymidine by copper(I)-catalyzed [3+2] cycloaddition. Tetrahedron 64, 5467–5471 (2008).

    Article  CAS  Google Scholar 

  27. Sanzone, A. P., El-Sagheer, A. H., Brown, T. & Tavassoli, A. Assessing the biocompatibility of click-linked DNA in Escherichia coli. Nucleic Acids Res. 40, 10567–10575 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Birts, C. N. et al. Transcription of click-linked DNA in human cells. Angew. Chem. Int. Ed. 53, 2362–2365 (2014).

    Article  CAS  Google Scholar 

  29. El-Sagheer, A. H. & Brown, T . Efficient RNA synthesis by in vitro transcription of a triazole-modified DNA template. Chem. Commun. 47, 12057–12058 (2011).

    Article  CAS  Google Scholar 

  30. Dallmann, A. et al. Structure and dynamics of triazole-linked DNA: biocompatibility explained. Chemistry 17, 14714–14717 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Chapman, S. et al. The photoreversible fluorescent protein iLOV outperforms GFP as a reporter of plant virus infection. Proc. Natl Acad. Sci. USA 105, 20038–20043 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. El-Sagheer, A. H. & Brown, T. New strategy for the synthesis of chemically modified RNA constructs exemplified by hairpin and hammerhead ribozymes. Proc. Natl Acad. Sci. USA 107, 15329–15334 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kypr, J., Kejnovská, I., Renčiuk, D. & Vorlíčková, M. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res. 37, 1713–1725 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

  36. Hsu, D. S., Kim, S. T., Sun, Q. & Sancar, A. Structure and function of the Uvrb protein. J. Biol. Chem. 270, 8319–8327 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Truglio, J. J., Croteau, D. L., Van Houten, B. & Kisker, C. Prokaryotic nucleotide excision repair: the UvrABC system. Chem. Rev. 106, 233–252 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Merryman, C. & Gibson, D. G. Methods and applications for assembling large DNA constructs. Metab. Eng. 14, 196–204 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Annaluru, N. et al. Total synthesis of a functional designer eukaryotic chromosome. Science 344, 55–58 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Weber, M. et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat. Genet. 39, 457–466 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Ziller, M. J. et al. Charting a dynamic DNA methylation landscape of the human genome. Nature 500, 477–481 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Nielsen, P. E. DNA analogues with nonphosphodiester backbones. Annu. Rev. Biophys. Biomol. Struct. 24, 167–183 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Pinheiro, V. B. & Holliger, P. The XNA world: progress towards replication and evolution of synthetic genetic polymers. Curr. Opin. Chem. Biol. 16, 245–252 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Sergueev, D., Hasan, A., Ramaswamy, M. & Shaw, B. R. Boranophosphate oligonucleotides: new synthetic approaches. Nucleosides Nucleotides 16, 1533–1538 (1997).

    Article  CAS  Google Scholar 

  45. Shivalingam, A., Tyburn, A. E., El-Sagheer, A. H. & Brown, T. Molecular requirements of high-fidelity replication-competent DNA backbones for orthogonal chemical ligation. J. Am. Chem. Soc. 139, 1575–1583 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Tsien for his kind gift of pRSET-mCherry, N.J. Wright for assistance with CD spectroscopy, and D. Brown for access to ATDBio's oligonucleotide synthesis facilities. This work was supported by UK BBSRC grants BB/J001694/2 and BB/M025624/1.

Author information

Authors and Affiliations

Authors

Contributions

A.T. conceived, designed and supervised the study. M.K. synthesized the modified DNA bases, conducted the click-DNA assembly, carried out all the biological experiments and analysed data. N.G. and A.H.E.-S. conducted the oligonucleotide synthesis, mass spectrometry and analysed the data. T.B. provided material and supervision for oligonucleotide synthesis. The manuscript was written by M.K. and A.T. with input from all the authors.

Corresponding authors

Correspondence to Tom Brown or Ali Tavassoli.

Ethics declarations

Competing interests

M.K. and A.T. are co-inventors on the US patent application ‘one-pot gene synthesis’. A.H.E.S. and T.B. are co-inventors on US patent 8,846,883 B2 Oligonucleotide Ligation.

Supplementary information

Supplementary information

Supplementary information (PDF 903 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukwikila, M., Gale, N., El-Sagheer, A. et al. Assembly of a biocompatible triazole-linked gene by one-pot click-DNA ligation. Nature Chem 9, 1089–1098 (2017). https://doi.org/10.1038/nchem.2850

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2850

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing