Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ephemeral collision complexes mediate chemically termolecular transformations that affect system chemistry

Abstract

Termolecular association reactions involve ephemeral collision complexes—formed from the collision of two molecules—that collide with a third and chemically inert ‘bath gas’ molecule that simply transfers energy to/from the complex. These collision complexes are generally not thought to react chemically on collision with a third molecule in the gas-phase systems of combustion and planetary atmospheres. Such ‘chemically termolecular’ reactions, in which all three molecules are involved in bond making and/or breaking, were hypothesized long ago in studies establishing radical chain branching mechanisms, but were later concluded to be unimportant. Here, with data from ab initio master equation and kinetic-transport simulations, we reveal that reactions of H + O2 collision complexes with other radicals constitute major kinetic pathways under common combustion situations. These reactions are also found to influence flame propagation speeds, a common measure of global reactivity. Analogous chemically termolecular reactions mediated by ephemeral collision complexes are probably of significance in various combustion and planetary environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Results from simulations of flames propagating into a hydrogen–air mixture with a hydrogen mole fraction X H 2 of 0.5 at atmospheric pressure and temperature.
Figure 2: Fraction of total HO2 + R reaction flux through H + O2 + R, fH+O2+R = ωH+O2+R/(ωH+O2+R + ωHO2+R) and peak radical mole fractions XR, in flames propagating through hydrogen–air mixtures.
Figure 3: Contribution of chemically termolecular reactions mediated by ephemeral HO2** collision complexes to the planar flame propagation speed suo.

Similar content being viewed by others

References

  1. Lindemann, F. A. et al. Discussion on ‘the radiation theory of chemical action’. Trans. Faraday Soc. 17, 598–606 (1922).

    Article  Google Scholar 

  2. Hinshelwood, C. N. On the theory of unimolecular reactions. Proc. R. Soc. Lond. A 113, 230–233 (1926).

    Article  CAS  Google Scholar 

  3. Widom, B. Molecular transitions and chemical reaction rates. Science 148, 1555–1560 (1965).

    Article  CAS  Google Scholar 

  4. Jasper, A. W. et al. Predictive a priori pressure-dependent kinetics. Science 346, 1212–1215 (2014).

    Article  CAS  Google Scholar 

  5. Perrin, J. Radiation and chemistry. Trans. Faraday Soc. 17, 546–572 (1922).

    Article  CAS  Google Scholar 

  6. Vuitton, V., Yelle, R. V., Lavvas, P. & Klippenstein, S. J. Rapid association reactions at low pressure: impact on the formation of hydrocarbons on titan. Astrophys. J. 744, 1–7 (2012).

    Article  Google Scholar 

  7. Zare, R. N. Laser control of chemical reactions. Science 279, 1875–1879 (1998).

    Article  CAS  Google Scholar 

  8. Yan, S., Wu, Y. T., Zhang, B. L., Yue, X. F. & Liu, K. P. Do vibrational excitations of CHD3 preferentially promote reactivity toward the chlorine atom? Science 316, 1723–1726 (2007).

    Article  CAS  Google Scholar 

  9. Olzmann, M., Gebhardt, J. & Scherzer, K. An extended mechanism for chemical activation systems. Int. J. Chem. Kinet. 23, 825–835 (1991).

    Article  CAS  Google Scholar 

  10. Glowacki, D. R. et al. Interception of excited vibrational quantum states by O2 in atmospheric association reactions. Science 337, 1066–1069 (2012).

    Article  CAS  Google Scholar 

  11. Burke, M. P., Goldsmith, C. F., Georgievskii, Y. & Klippenstein, S. J. Towards a quantitative understanding of the role of non-Boltzmann reactant distributions in low-temperature oxidation. Proc. Combust. Inst. 35, 205–213 (2015).

    Article  CAS  Google Scholar 

  12. Dong, W. et al. Transition-state spectroscopy of partial wave resonances in the F + HD reaction. Science 327, 1501–1502 (2010).

    Article  CAS  Google Scholar 

  13. Kim, J. B. et al. Spectroscopic observation of resonances in the F + H2 reaction. Science 349, 510–513 (2015).

    Article  CAS  Google Scholar 

  14. Hinshelwood, C. N. & Green, T. E. The interaction of nitric oxide and hydrogen and the molecular statistics of termolecular gaseous reactions. J. Chem. Soc. 129, 730–739 (1926).

    Article  Google Scholar 

  15. Hinshelwood, C. N. & Williamson, A. T. The Reaction between Hydrogen and Oxygen (Oxford Univ. Press, 1934).

    Google Scholar 

  16. Semenov, N. N. Chemical Kinetics and Chain Reactions (Oxford Univ. Press, 1935).

    Google Scholar 

  17. Baldwin, R. R. The first limit of the hydrogen + oxygen reaction in potassium chloride-coated vessels. Trans. Faraday Soc. 52, 1344–1354 (1956).

    Article  CAS  Google Scholar 

  18. Burke, M. P., Chaos, M., Ju, Y., Dryer, F. L. & Klippenstein, S. J. Comprehensive H2/O2 kinetic model for high-pressure combustion. Int. J. Chem. Kinet. 44, 444–474 (2012).

    Article  CAS  Google Scholar 

  19. Kéromnès, A. et al. An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures. Combust. Flame 160, 995–1011 (2013).

    Article  Google Scholar 

  20. Dixon-Lewis, G. Flame structure and flame reaction kinetics. I. Solution of conservation equations and application to rich hydrogen-oxygen flames. Proc. R. Soc. Lond. A 298, 495–513 (1967).

    Article  CAS  Google Scholar 

  21. Dixon-Lewis, G. & Williams, D. J. in Comprehensive Chemical Kinetics Vol. 17 (eds Branford, C. H. & Tippler, C. F. H.) 1–248 (Elsevier, 1977).

    Google Scholar 

  22. Wu, T., Werner, H. J. & Manthe, U. First-principles theory for the H + CH4 → H2 + CH3 reaction. Science 306, 2227–2229 (2004).

    Article  CAS  Google Scholar 

  23. Czakó, G. & Bowman, J. M. Dynamics of the reaction of methane with chlorine atom on an accurate potential energy surface. Science 334, 343–346 (2011).

    Article  Google Scholar 

  24. Tse, S. D., Zhu, D. L. & Law, C. K. Morphology and burning rates of expanding spherical flames in H2/O2/inert mixtures up to 60 atmospheres. Proc. Combust. Inst. 28, 1793–1800 (2000).

    Article  CAS  Google Scholar 

  25. Yelle, R. V. et al. Formation of NH3 and CH2NH in Titan's upper atmosphere. Faraday Discuss. 147, 31–49 (2010).

    Article  CAS  Google Scholar 

  26. Bar-Nun, A., Bar-Nun, N., Bauer, S. H. & Sagan, C. Shock synthesis of amino acids in simulated primitive environments. Science 168, 470–472 (1970).

    Article  CAS  Google Scholar 

  27. Rimmer, P. B. & Helling, Ch. A chemical kinetics network for lightning and life in planetary atmospheres. Astrophys. J. Supp. Ser. 224, 1–33 (2016).

    Article  Google Scholar 

  28. Bunker, D. L. & Davidson, N. On the interpretation of halogen atom recombination rates. J. Am. Chem. Soc. 80, 5090–5096 (1958).

    Article  CAS  Google Scholar 

  29. Liu, J. & Barker, J. R. On the chaperon mechanism: application to ClO + ClO (+N2) → ClOOCl (+N2). J. Phys. Chem. A 111, 8689–8698 (2007).

    Article  CAS  Google Scholar 

  30. Sleiman, C. et al. Pressure dependent low temperature kinetics for CN + CH3CN: competition between chemical reaction and van der Waals complex formation. Phys. Chem. Chem. Phys. 18, 15118–15132 (2016).

    Article  CAS  Google Scholar 

  31. Miller, J. A. & Klippenstein, S. J. Master equation methods in gas phase chemical kinetics. J. Phys. Chem. A 110, 10528–10544 (2006). .

    Article  CAS  Google Scholar 

  32. Pilling, M. J. & Robertson, S. H. Master equation models for chemical reactions of importance in combustion. Ann. Rev. Phys. Chem. 54, 245–275 (2003).

    Article  CAS  Google Scholar 

  33. Barker, J. R. & Golden, D. M. Master equation analysis of pressure-dependent atmospheric reactions. Chem. Rev. 103, 4577–4591 (2003).

    Article  CAS  Google Scholar 

  34. Georgievskii, Y., Miller, J. A., Burke, M. P. & Klippenstein, S. J. Reformulation and solution of the master equation for multiple-well chemical reactions. J. Phys. Chem. A 117, 12146–12154 (2013).

    Article  CAS  Google Scholar 

  35. Sellevåg, S. R., Georgievskii, Y. & Miller, J. A. The temperature and pressure dependence of the reactions H + O2 (+M) → HO2 (+M) and H + OH (+M) → H2O (+M). J. Phys. Chem. A 112, 5085–5095 (2008).

    Article  Google Scholar 

  36. Maranzana, A., Barker, J. R. & Tonachini, G. Master equation simulations of competing unimolecular and bimolecular reactions: application to OH production in the reaction of acetyl radical with O2 . Phys. Chem. Chem. Phys. 9, 4129–4141 (2007).

    Article  CAS  Google Scholar 

  37. Fernández-Ramos, A. & Varandas, A. J. C. A VTST study of the H + O3 and O + HO2 reactions using a six-dimensional DMBE potential energy surface for ground state HO3 . J. Phys. Chem. A 106, 4077–4083 (2002).

    Article  Google Scholar 

  38. Burke, M. P., Klippenstein, S. J. & Harding, L. B. A quantitative explanation for the apparent anomalous temperature dependence of OH + HO2 = H2O + O2 through multi-scale modeling. Proc. Combust. Inst. 34, 547–555 (2013).

    Article  CAS  Google Scholar 

  39. Kee, R. J., Dixon-Lewis, G., Warnatz, J., Coltrin, M. E. & Miller, J. A. A Fortran Computer Code Package for the Evaluation of Gas-Phase, Multi-Component Transport Properties. Technical Report SAND86-8246 (Sandia National Laboratories, 1986).

    Google Scholar 

  40. Georgievskii, Y. & Klippenstein, S. J. MESS.2016.3.23 (2013); http://tcg.cse.anl.gov/papr/codes/mess.html

  41. CHEMKIN (Reaction Design); http://www.reactiondesign.com/products/chemkin/

  42. Goodwin, D. G., Moffat, H. K. & Speth, R. L. Cantera V.2.3.0 (2017); http://www.cantera.org

Download references

Acknowledgements

This material is based on work supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under contract no. DE-AC02-06CH11357. M.P.B. acknowledges financial support from Columbia University.

Author information

Authors and Affiliations

Authors

Contributions

M.P.B. and S.J.K. conceived and designed the calculations. M.P.B. performed the master equation calculations with technical input from S.J.K., and M.P.B. performed the kinetic-transport calculations. Both authors contributed to writing the paper.

Corresponding author

Correspondence to Michael P. Burke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 326 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burke, M., Klippenstein, S. Ephemeral collision complexes mediate chemically termolecular transformations that affect system chemistry. Nature Chem 9, 1078–1082 (2017). https://doi.org/10.1038/nchem.2842

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2842

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing