Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural snapshots of concerted double E–H bond activation at a transition metal centre

A Corrigendum to this article was published on 23 January 2018

This article has been updated

Abstract

Bond activation at a transition metal centre is a key fundamental step in numerous chemical transformations. The oxidative addition of element–hydrogen bonds, for example, represents a critical step in a range of widely applied catalytic processes. Despite this, experimental studies defining steps along the bond activation pathway are very rare. In this work, we report on fundamental studies defining a double oxidative activation pathway: combined experimental and computational approaches yield structural snapshots of the simultaneous activation of both bonds of a β-diketiminate-stabilized GaH2 unit at a single metal centre. Systematic variation of the supporting phosphine ligands and single crystal X-ray/neutron diffraction are exploited in tandem to allow structural visualization of the activation process, from a η2-H,H σ-complex showing little Ga–H bond activation, through species of intermediate geometry featuring stretched Ga–H and compressed M–H/M–Ga bonds, to a fully activated metal dihydride featuring a neutral (carbene-type) N-heterocyclic GaI ligand.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single–step oxidative activation of one or two E–H bonds at a single metal centre (shown for E = a group 13 element)21,22.
Figure 2: Syntheses of 2-dppp, 2-dcype, 2-dcypp and 2-PCy3 from the corresponding [(phosphine)2Rh]+ containing precursors (counter-anions omitted for clarity).
Figure 3: Molecular structures of the cationic components as determined by X-ray diffraction.
Figure 4: Key orbital interactions between the [(dppp)Rh]+ and (NacNac)DippGaH2 fragments in 2-dppp calculated using an ETS-NOCV analysis22,58.
Figure 5: A possible energetic pathway for the [(Cy3P)2Rh]+ system linking an η2-H,H σ-complex to a six-coordinate (agostically supported) RhIII dihydride.

Similar content being viewed by others

Change history

  • 18 December 2017

    References 23–27 and 31–38 in the introductory paragraphs describe literature precedent for the activation of two E–H bonds at a transition metal centre for E = B or C). It should be noted that experimental precedent also exists for the analogous activation of Si–H bonds and the manuscript has been modified to include additional citation of this chemistry (refs 22, 28–30). References 22. Lipke, M. C., Liberman-Martin, A. L. & Tilley, T. D. Electrophilic activation of silicon–hydrogen bonds in catalytic hydrosilations. Angew. Chem. Int. Ed. 56, 2260–2294 (2017). 28. Thomas, C. M. & Peters, J. C. An η3-H2SiR2 adduct of [{PhB(CH2PiP2)3}FeH. Angew. Chem. Int. Ed. 45, 776–780 (2006). 29. Faluso, M. E., Glaser, P. B. & Tilley, T. D. Cp*;(PiPr3)RuOTf: a reagent for access to ruthenium silylene complexes. Organometallics 30, 5524–5531 (2011). 30. Faluso, M. E., Lipke, M. C. & Tilley, T. D. Structural and mechanistic investigation of a cationic hydrogen-substituted ruthenium silylene catalyst for alkene hydrosilation. Chem. Sci. 4, 3882–3887 (2013).

References

  1. Hartwig, J. F. Organotransition Metal Chemistry: from Bonding to Catalysis (University Science Books, 2010).

    Google Scholar 

  2. Kubas, G. J. Metal Dihydrogen and σ-Bond Complexes: Structure, Theory and Reactivity (Kluwer Academic/Plenum Publishers, 2001).

    Google Scholar 

  3. Crabtree, R. H. The organometallic chemistry of alkanes. Chem. Rev. 85, 245–269 (1985).

    CAS  Google Scholar 

  4. Arndtsen, B. A., Bergman, R. G., Mobley, T. A. & Peterson, T. H. Selective intermolecular carbon–hydrogen bond activation by synthetic metal complexes in homogeneous solution. Acc. Chem. Res. 28, 154–162 (1995).

    CAS  Google Scholar 

  5. Shilov, A. E. & Shul'pin, G. B. Activation of C–H bonds by metal complexes. Chem. Rev. 97, 2879–2932 (1997).

    CAS  PubMed  Google Scholar 

  6. Jones, W. D. Isotope effects in C–H bond activation reactions by transition metals. Acc. Chem. Res. 36, 140–146 (2003).

    CAS  PubMed  Google Scholar 

  7. Labinger, J. A. & Bercaw, J. E. Understanding and exploiting C–H activation. Nature 417, 507–514 (2002).

    CAS  PubMed  Google Scholar 

  8. Crabtree, R. H. Organometallic C–H activation. J. Organomet. Chem. 689, 4083–4091 (2004).

    CAS  Google Scholar 

  9. Schubert, U. Coordination of Si–H σ bonds to transition metals. Adv. Organomet. Chem. 30, 151–187 (1990).

    CAS  Google Scholar 

  10. Alcaraz, G. & Sabo-Etienne, S. Coordination and dehydrogenation of amine-boranes at metal centers. Angew. Chem. Int. Ed. 49, 7170–7179 (2010).

    CAS  Google Scholar 

  11. Riddlestone, I. M., Abdalla, J. A. B. & Aldridge, S. Coordination and activation of E–H bonds (E = B, Al, Ga) Adv. Organomet. Chem. 63, 1–38 (2015).

    CAS  Google Scholar 

  12. Kubas, G. J., Ryan, R. R., Swanson, B. I., Vergamini, P. J. & Wasserman, H. J. Characterization of the first examples of isolable molecular hydrogen complexes, M(CO)3(PR3)2(H2) (M = molybdenum or tungsten; R = Cy or isopropyl). evidence for a side-on bonded dihydrogen ligand. J. Am. Chem. Soc. 106, 451–452 (1984).

    CAS  Google Scholar 

  13. Hall, C. & Perutz, R. N. Transition metal alkane complexes. Chem. Rev. 96, 3125–3146 (1996).

    CAS  PubMed  Google Scholar 

  14. Cowan, A. J. & George, M. W. Formation and reactivity of organometallic alkane complexes. Coord. Chem. Rev. 252, 2504–2511 (2008).

    CAS  Google Scholar 

  15. Bernskoetter, W. H., Schauer, C. K., Goldberg, K. I. & Brookhart, M. Characterization of a rhodium(I) σ-methane complex in solution. Science 326, 553–556 (2009).

    CAS  PubMed  Google Scholar 

  16. Pike, S. D. et al. Synthesis and characterization of a rhodium(I) σ-alkane complex in the solid state. Science 337, 1648–1651 (2012).

    CAS  PubMed  Google Scholar 

  17. Pandey, K. K. Transition metal σ-borane complexes. Coord. Chem. Rev. 253, 37–55 (2009).

    CAS  Google Scholar 

  18. Lin, Z. Transition metal σ-borane complexes. Struct. Bonding (Berlin) 130, 123–148 (2008).

    CAS  Google Scholar 

  19. Crabtree, R. H., Holt, E. M., Lavin, M. & Morehouse, S. M. Inter- vs. intramolecular carbon-hydrogen activation: a carbon–hydrogen–iridium bridge in [IrH2(8-methylquinoline)L2]BF4 and a CH + M → CMH reaction trajectory. Inorg. Chem. 24, 1986–1992 (1985).

    CAS  Google Scholar 

  20. Ekkert, O., White, A. J. P. & Crimmin, M. Trajectory of approach of a zinc–hydrogen bond to transition metals. Angew. Chem. Int. Ed. 55, 16031–16034 (2016).

    CAS  Google Scholar 

  21. Green, J. C., Green, M. L. H. & Parkin, G. The occurrence and representation of three-centre two-electron bonds in covalent inorganic compounds. Chem. Commun. 48, 11481–11503 (2012).

    CAS  Google Scholar 

  22. Lipke, M. C., Liberman-Martin, A. L & Tilley, T. D. Electrophilic activation of silicon–hydrogen bonds in catalytic hydrosilations. Angew. Chem. Int. Ed. 56, 2260–2294 (2017).

    CAS  Google Scholar 

  23. Alcaraz, G., Helmstedt, U., Clot, E., Vendier, L. & Sabo-Etienne, S. A terminal borylene ruthenium complex from B−H activation to reversible hydrogen release. J. Am. Chem. Soc. 130, 12878–12879 (2008).

    CAS  PubMed  Google Scholar 

  24. Alcaraz, G., Grellier, M. & Sabo-Etienne, S. Bis σ-bond dihydrogen and borane ruthenium complexes: bonding nature, catalytic applications, and reversible hydrogen release. Acc. Chem. Res. 42, 1640–1649 (2009).

    CAS  PubMed  Google Scholar 

  25. Turner, J. et al. Formation of sub-valent carbenoid ligands by metal-mediated dehydrogenation chemistry: coordination and activation of H2Ga{(NDippCMe)2CH}. Chem. Sci. 4, 4245–4250 (2013).

    CAS  Google Scholar 

  26. Abdalla, J. A. B. et al. Coordination and activation of Al-H and Ga-H bonds. Chem. Eur. J. 20, 17624–17634 (2014).

    CAS  PubMed  Google Scholar 

  27. O'Neill, M. et al. Borane to boryl hydride to borylene dihydride: explicit demonstration of boron-to-metal α-hydride migration in aminoborane activation. J. Am. Chem. Soc. 133, 11500–11503 (2012).

    Google Scholar 

  28. Thomas, C. M. & Peters, J. C. An η3-H2SiR2 adduct of [{PhB(CH2PiPr2)3}FeH. Angew. Chem. Int. Ed. 45, 776–780 (2006).

    CAS  Google Scholar 

  29. Faluso, M. E., Glaser, P. B. & Tilley, T. D. Cp*(PiPr3)RuOTf: a reagent for access to ruthenium silylene complexes. Organometallics. 30, 5524–5531 (2011).

    Google Scholar 

  30. Faluso, M. E., Lipke, M. C. & Tilley, T. D. Structural and mechanistic investigation of a cationic hydrogen-substituted ruthenium silylene catalyst for alkene hydrosilation. Chem. Sci. 4, 3882–3887 (2013).

    Google Scholar 

  31. Empsall, H. D. et al. Synthesis and X-ray structure of an unusual iridium ylide or carbene complex. Chem. Commun. 589–590 (1977).

  32. Boutry, O. et al. Double C-H activation at the α-carbon of cyclic ethers by Tp*Ir(C2H4)2 . J. Am. Chem. Soc. 114, 7288–7290 (1992).

    CAS  Google Scholar 

  33. Li, Z.-W. & Taube, H. Dihydrogen complexes of tetraammineosmium(II) with carbene as co-ligand: facile hydrogen transfer from cyclic ethers to the metal center. J. Am. Chem. Soc. 116, 11584–11585 (1994).

    CAS  Google Scholar 

  34. Luecke, H. F., Arndtsen, B. A., Burger, P. & Bergman, R. G. Synthesis of Fischer carbene complexes of iridium by C-H bond activation of methyl and cyclic ethers: evidence for reversible α-hydrogen migration. J. Am. Chem. Soc. 118, 2517–2518 (1996).

    CAS  Google Scholar 

  35. Holtcamp, M. W., Labinger, J. A. & Bercaw, J. E. C-H activation at cationic platinum(II) centers. J. Am. Chem. Soc. 119, 848–849 (1997).

    CAS  Google Scholar 

  36. Coalter, J. N., Ferrando, G. & Caulton, K. G. Geminal dehydrogenation of a C(sp3) CH2 group by unsaturated Ru(II) or Os(II). New J. Chem. 24, 835–836 (2000).

    CAS  Google Scholar 

  37. Lee, D.-H., Chen, J., Faller, J. W. & Crabtree, R. H. Reversible α-elimination in the conversion of N-CH3 to N-CH=Ir by double C-H activation. Chem. Commun. 213–214 (2001).

  38. Whited, M. T. & Grubbs, R. H. Late metal carbene complexes generated by multiple C-H activations: examining the continuum of M=C bond reactivity. Acc. Chem. Res. 42, 1607–1616 (2009).

    CAS  PubMed  Google Scholar 

  39. Bourissou, D., Guerret, O., Gabbaï, F. P. & Bertrand, G. Stable carbenes. Chem. Rev. 100, 39–92 (2000).

    CAS  PubMed  Google Scholar 

  40. Staubitz, A., Robertson, A. P. M. & Manners, I. Ammonia-borane and related compounds as dihydrogen sources. Chem. Rev. 110, 4079–4124 (2010).

    CAS  PubMed  Google Scholar 

  41. Singh, S. et al. Syntheses, characterization, and X-ray crystal structures of β-diketiminate group 13 hydrides, chlorides, and fluorides. Inorg. Chem. 45, 1853–1860 (2006).

    CAS  PubMed  Google Scholar 

  42. Dallanegra, R., Robertson, A. P. M., Chaplin, A. B., Manners, I. & Weller, A. S. Tuning the [L2RhH3B·NR3]+ interaction using phosphine bite angle. Demonstration by the catalytic formation of polyaminoboranes. Chem. Commun. 47, 3763–3765 (2011).

    CAS  Google Scholar 

  43. Cooper, R. I., Thompson, A. L. & Watkin, D. J. CRYSTALS enhancements: dealing with hydrogen atoms in fefinement. J. Appl. Cryst. 43, 1100–1107 (2010).

    CAS  Google Scholar 

  44. Cordero, B. et al. Covalent radii revisited. Dalton Trans. 40, 2832–2838 (2008).

    Google Scholar 

  45. Cadenbach, T. et al. Molecular alloys, linking organometallics with intermetallic hume–Rothery phases: the highly coordinated transition metal compounds [M(ZnR)n] (n ≥ 8) containing organo–zinc ligands. J. Am. Chem. Soc. 131, 16063–16077 (2009).

    CAS  PubMed  Google Scholar 

  46. Cadenbach, T., Gemel, C., Zacher, D. & Fischer, R. A. Methylgallium as a terminal ligand in [(Cp*Ga)4Rh(GaCH3)]+. Angew. Chem. Int. Ed. 47, 3438–3441 (2008).

    CAS  Google Scholar 

  47. Bollermann, T. et al. Homoleptic hexa and penta gallylene coordinated complexes of molybdenum and rhodium. Inorg. Chem. 50, 5808–5815 (2011).

    CAS  PubMed  Google Scholar 

  48. Freixa, Z. & van Leeuwen, P. Bite angle effects in diphosphine metal catalysts: steric or electronic? Dalton Trans. 77, 1890–1901 (2003).

    Google Scholar 

  49. DuBois, D. L. et al. Hydride transfer from rhodium complexes to triethylborane. Organometallics 25, 4414–4419 (2006).

    CAS  Google Scholar 

  50. Wilson, A. D., Miller, A. J. M., DuBois, D. L., Labinger, J. A. & Bercaw, J. E. Thermodynamic studies of [H2Rh(diphosphine)2]+ and [HRh(diphosphine)2(CH3CN)]2+ complexes in acetonitrile. Inorg. Chem. 49, 3918–3926 (2010).

    CAS  PubMed  Google Scholar 

  51. Sewell, L. J., Lloyd-Jones, G. C. & Weller, A. S. Development of a generic mechanism for the dehydrocoupling of amine-boranes: a stoichiometric, catalytic, and kinetic study of H3B·NMe2H using the [Rh(PCy3)2]+ fragment. J. Am. Chem. Soc. 134, 3598–3610 (2012).

    CAS  PubMed  Google Scholar 

  52. Brookhart, M., Green, M. L. H. & Parkin, G. Agostic interactions in transition metal compounds. Proc. Natl Acad. Sci. USA 104, 6908–6914 (2007).

    CAS  PubMed  Google Scholar 

  53. Smart, K. A. et al. Step by step introduction of silazane moieties at ruthenium different extents of Ru–H–Si bond activation. Inorg. Chem. 52, 2654–2661 (2013).

    CAS  PubMed  Google Scholar 

  54. Smart, K. A. et al. Nature of Si-H interactions in a series of ruthenium silazane complexes using multinuclear solid-state NMR and neutron diffraction. Inorg. Chem. 53, 1156–1165 (2014).

    CAS  PubMed  Google Scholar 

  55. Edwards, A. J. Neutron diffraction — recent applications to chemical structure determination. Aus. J. Chem. 64, 869–872 (2011).

    CAS  Google Scholar 

  56. Aldridge, S. & Downs, A. J. Hydrides of the main group metals; new variations on an old theme. Chem. Rev. 101, 3305–3365 (2001).

    CAS  PubMed  Google Scholar 

  57. Bau, R. & Drabnis, M. H. Structures of transition metal hydrides determined by neutron diffraction. Inorg. Chim. Acta 259, 27–50 (1997).

    CAS  Google Scholar 

  58. Bader, R. F. W. A quantum theory of molecular structure and its applications. Chem. Rev. 91, 893–928 (1991).

    CAS  Google Scholar 

  59. Mitoraj, M. P., Michalak, A. & Ziegler, T. A combined charge and energy decomposition scheme for bond analysis. J. Chem. Theory Comput. 5, 962–975 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the EPSRC (studentship to J.A.B.A.); ANSTO is thanked for the allocation of discretionary neutron beam-time on KOALA to proposal DB3706 and a further allocation to proposal P3932. C.S. thanks the Alexander von Humboldt Stiftung for a Feodor Lynen Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

J.A.B.A. and A.C. synthesized and characterized the compounds. R.T., A.J.E. and A.L.T. collected the single-crystal X-ray and neutron crystallographic data and determined the crystal structures. J.A.B.A. and C.P.S. carried out the DFT calculations. S.A. generated and managed the project and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Simon Aldridge.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 10840 kb)

Supplementary information

Crystallographic data for compound 3 (CIF 1160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdalla, J., Caise, A., Sindlinger, C. et al. Structural snapshots of concerted double E–H bond activation at a transition metal centre. Nature Chem 9, 1256–1262 (2017). https://doi.org/10.1038/nchem.2792

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2792

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing