Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A 31-residue peptide induces aggregation of tau's microtubule-binding region in cells

Abstract

The self-propagation of misfolded conformations of tau underlies neurodegenerative diseases, including Alzheimer's. There is considerable interest in discovering the minimal sequence and active conformational nucleus that defines this self-propagating event. The microtubule-binding region, spanning residues 244–372, reproduces much of the aggregation behaviour of tau in cells and animal models. Further dissection of the amyloid-forming region to a hexapeptide from the third microtubule-binding repeat resulted in a peptide that rapidly forms fibrils in vitro. We show that this peptide lacks the ability to seed aggregation of tau244–372 in cells. However, as the hexapeptide is gradually extended to 31 residues, the peptides aggregate more slowly and gain potent activity to induce aggregation of tau244–372 in cells. X-ray fibre diffraction, hydrogen–deuterium exchange and solid-state NMR studies map the beta-forming region to a 25-residue sequence. Thus, the nucleus for self-propagating aggregation of tau244–372 in cells is packaged in a remarkably small peptide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Amyloid formation of R3-derived peptides and transmission to HEK(tau-RD(LM)-YFP) cells.
Figure 2: Amyloid formation and self-propagation of covalent variation of R3.
Figure 3: Fluorescence emission fingerprinting of R3 amyloids.
Figure 4: Structural investigations reveal a common parallel, stacked beta-sheet architecture in R3 amyloids.
Figure 5: Solid-state NMR spectra of R3SH fibrils show a homogenous, predominantly beta-strand structure.

Similar content being viewed by others

References

  1. Prusiner, S. B. A unifying role for prions in neurodegenerative diseases. Science 336, 1511–1513 (2012).

    Article  CAS  Google Scholar 

  2. Sanders, D. W. et al. Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron 82, 1271–1288 (2014).

    Article  CAS  Google Scholar 

  3. Braak, H. & Braak, E. Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol. Aging 16, 271–284 (1995).

    Article  CAS  Google Scholar 

  4. Clavaguera, F. et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc. Natl Acad. Sci. USA 110, 9535–9540 (2013).

    Article  CAS  Google Scholar 

  5. Boluda, S. et al. Differential induction and spread of tau pathology in young PS19 tau transgenic mice following intracerebral injections of pathological tau from Alzheimer's disease or corticobasal degeneration brains. Acta Neuropathol. 129, 221–237 (2015).

    Article  CAS  Google Scholar 

  6. Wang, Y. & Mandelkow, E. Tau in physiology and pathology. Nat. Rev. Neurosci. 17, 5–21 (2016).

    Article  Google Scholar 

  7. Morris, M. et al. Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice. Nat. Neurosci. 18, 1183–1189 (2015).

    Article  CAS  Google Scholar 

  8. Goedert, M., Falcon, B., Clavaguera, F. & Tolnay, M. Prion-like mechanisms in the pathogenesis of tauopathies and synucleinopathies. Curr. Neurol. Neurosci. Rep. 14, 495-491–495-411 (2014).

    Article  Google Scholar 

  9. Wischik, C. M. et al. Structural characterization of the core of the paired helical filament of Alzheimer disease. Proc. Natl Acad. Sci. USA 85, 4884–4888 (1988).

    Article  CAS  Google Scholar 

  10. Wille, H., Drewes, G., Biernat, J., Mandelkow, E.-M. & Mandelkow, E. Alzheimer-like paired helical filaments and antiparallel dimers formed from microtubule-associated protein tau in vitro. J. Cell. Biol. 118, 573–584 (1992).

    Article  CAS  Google Scholar 

  11. von Bergen, M. et al. Assembly of τ protein into Alzheimer paired helical filaments depends on a local sequence motif ((306)VQIVYK)311)) forming β structure. Proc. Natl Acad. Sci. USA 97, 5129–5134 (2000).

    Article  CAS  Google Scholar 

  12. Sawaya, M. R. et al. Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447, 453–457 (2007).

    Article  CAS  Google Scholar 

  13. Sievers, S. A. et al. Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature 475, 96–100 (2011).

    Article  CAS  Google Scholar 

  14. Daebel, V. et al. β-sheet core of tau paired helical filaments revealed by solid-state NMR. J. Am. Chem. Soc. 134, 13982–13989 (2012).

    Article  CAS  Google Scholar 

  15. Tomoo, K. et al. Possible role of each repeat structure of the microtubule-binding domain of the tau protein in in vitro aggregation. J. Biochem. 138, 413–423 (2005).

    Article  CAS  Google Scholar 

  16. Adamcik, J. et al. Microtubule-binding R3 fragment from tau self-assembles into giant multistranded amyloid ribbons. Angew. Chem. Int. Ed. 55, 618–622 (2016).

    Article  CAS  Google Scholar 

  17. LeVine, H. Thioflavine T interaction with synthetic Alzheimer's disease b-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci. 2, 404–410 (1993).

    Article  CAS  Google Scholar 

  18. Goedert, M. et al. Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature 383, 550–553 (1996).

    Article  CAS  Google Scholar 

  19. Wilson, D. M. & Binder, L. I. Free fatty acids stimulate the polymerization of tau and amyloid beta peptides. In vitro evidence for a common effector of pathogenesis in Alzheimer's disease. Am. J. Pathol. 150, 2181–2195 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Woerman, A. L. et al. Propagation of prions causing synucleinopathies in cultured cells. Proc. Natl Acad. Sci. USA 112, E4949–E4958 (2015).

    Article  CAS  Google Scholar 

  21. Furukawa, Y., Kaneko, K. & Nukina, N. Tau protein assembles into isoform- and disulfide-dependent polymorphic fibrils with distinct structural properties. J. Biol. Chem. 286, 27236–27246 (2011).

    Article  CAS  Google Scholar 

  22. Soeda, Y. et al. Toxic tau oligomer formation blocked by capping of cysteine residues with 1,2-dihydroxybenzene groups. Nat. Commun. 6, 10216 (2015).

    Article  CAS  Google Scholar 

  23. Bhattacharya, K., Rank, K. B., Evans, D. B. & Sharma, S. K. Role of cysteine-291 and cysteine-322 in the polymerization of human tau into Alzheimer-like filaments. Biochem. Biophys. Res. Commun. 285, 20–26 (2001).

    Article  CAS  Google Scholar 

  24. Barghorn, S. & Mandelkow, E. Toward a unified scheme for the aggregation of tau into Alzheimer paired helical filaments. Biochemistry 41, 14885–14896 (2002).

    Article  CAS  Google Scholar 

  25. Velasco, A. et al. Detection of filamentous tau inclusions by the fluorescent Congo red derivative FSB [(trans,trans)-1-fluoro-2,5-bis(3-hydroxycarbonyl-4-hydroxy)styrylbenzene]. FEBS Lett. 582, 901–906 (2008).

    Article  CAS  Google Scholar 

  26. Harada, R. et al. Use of a benzimidazole derivative BF-188 in fluorescence multispectral imaging for selective visualization of tau protein fibrils in the Alzheimer's disease brain. Mol. Imaging Biol. 16, 19–27 (2014).

    Article  Google Scholar 

  27. Astbury, W. T., Dickinson, S. & Bailey, K. CCLXXIX. The X-ray interpretation of denaturation and the structure of the seed globulins. Biochem. J. 29, 2351–2361 (1935).

    Article  CAS  Google Scholar 

  28. Wille, H. et al. Natural and synthetic prion structure from X-ray fiber diffraction. Proc. Natl Acad. Sci. USA 106, 16990–16995 (2009).

    Article  CAS  Google Scholar 

  29. Jahn, T. R. et al. The common architecture of cross-beta amyloid. J. Mol. Biol. 395, 717–727 (2010).

    Article  CAS  Google Scholar 

  30. Wan, W. et al. Degradation of fungal prion HET-s(218-289) induces formation of a generic amyloid fold. Biophys. J. 102, 2339–2344 (2012).

    Article  CAS  Google Scholar 

  31. Wan, W. et al. Heterogeneous seeding of a prion structure by a generic amyloid form of the fungal prion-forming domain HET-s(218–289). J. Biol. Chem. 288, 29604–29612 (2013).

    Article  CAS  Google Scholar 

  32. Legname, G. et al. Continuum of prion protein structures enciphers a multitude of prion isolate-specified phenotypes. Proc. Natl Acad. Sci. USA 103, 19105–19110 (2006).

    Article  CAS  Google Scholar 

  33. Zhang, Y.-Z., Paterson, Y. & Roder, H. Rapid amide proton exchange rates in peptides and proteins measured by solvent quenching and two-dimensional NMR. Protein Sci. 4, 804–814 (1995).

    Article  CAS  Google Scholar 

  34. Takegoshi, K., Nakamura, S. & Terao, T. 13C–1H dipolar-driven 13C–13C recoupling without 13C rf irradiation in nuclear magnetic resonance of rotating solids. J. Chem. Phys. 118, 2325–2341 (2003).

    Article  CAS  Google Scholar 

  35. Wang, Y. & Jardetzky, O. Probability-based protein secondary structure identification using combined NMR chemical-shift data. Protein Sci. 11, 852–861 (2002).

    Article  CAS  Google Scholar 

  36. Ritter, C. et al. Correlation of structural elements and infectivity of the HET-s prion. Nature 435, 844–848 (2005).

    Article  CAS  Google Scholar 

  37. Takada, L. T. & Geschwind, M. D. Prion diseases. Semin. Neurol. 33, 348–356 (2013).

    Article  Google Scholar 

  38. Wan, W., Stöhr, J., Kendall, A. & Stubbs, G. Truncated forms of the prion protein PrP demonstrate the need for complexity in prion structure. Prion 9, 333–338 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.S., W.F.D., H.W., M.N. and S.B.P. are supported by grants from the National Institutes of Health (AG002132, AG031220, GM054616 and HL007731). J.S. and M.N. were supported by an award from the Glenn Foundation. J.S. is a recipient of the New Investigator Research Grant (2015-NIRG-339935) from the Alzheimer's Association. F.G. and J.R. are supported by a grant from the National Institutes of Health (GM104605). This work was also supported in part by the UCSF Research Resource Program Shared Equipment Award funded by the UCSF Office of Research, Daiichi Sankyo, the Henry M. Jackson Foundation, the Sherman Fairchild Foundation, and by a gift from the Rainwater Charitable Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.S., W.F.D. and S.B.P. conceived and designed the experiments; J.S., M.N., H.W., M.B., C.C., N.J., J.R., T.L., S.A., J.B., M.J.S.K. and K.R. performed the experiments; J.S., M.N., H.W.Y.W., M.B. and C.C analysed data; J.S., W.F.D. and S.B.P. co-wrote the paper; J.S., M.N. and H.W. contributed equally to this work.

Corresponding authors

Correspondence to Jan Stöhr or William F. DeGrado.

Ethics declarations

Competing interests

UCSF is conducting research sponsored by Daiichi Sankyo (Tokyo, Japan) to develop diagnostics and therapeutics for tau. Currently, there is no direct relationship between these agreements and this Article.

Supplementary information

Supplementary information

Supplementary information (PDF 32670 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stöhr, J., Wu, H., Nick, M. et al. A 31-residue peptide induces aggregation of tau's microtubule-binding region in cells. Nature Chem 9, 874–881 (2017). https://doi.org/10.1038/nchem.2754

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2754

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing