Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cooperative polymerization of α-helices induced by macromolecular architecture

Abstract

Catalysis observed in enzymatic processes and protein polymerizations often relies on the use of supramolecular interactions and the organization of functional elements in order to gain control over the spatial and temporal elements of fundamental cellular processes. Harnessing these cooperative interactions to catalyse reactions in synthetic systems, however, remains challenging due to the difficulty in creating structurally controlled macromolecules. Here, we report a polypeptide-based macromolecule with spatially organized α-helices that can catalyse its own formation. The system consists of a linear polymeric scaffold containing a high density of initiating groups from which polypeptides are grown, forming a brush polymer. The folding of polypeptide side chains into α-helices dramatically enhances the polymerization rate due to cooperative interactions of macrodipoles between neighbouring α-helices. The parameters that affect the rate are elucidated by a two-stage kinetic model using principles from nucleation-controlled protein polymerizations; the key difference being the irreversible nature of this polymerization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis of linear and brush polypeptides.
Figure 2: Rate difference and kinetic pattern of NCA polymerization.
Figure 3: Kinetic studies of brush polymerization.
Figure 4: Kinetic studies of random and block macroinitiators.
Figure 5: Simulations with cooperative covalent polymerization model.
Figure 6: Analysis of brush polymerization with two-stage kinetic model.

Similar content being viewed by others

References

  1. Breslow, R. Biomimetic chemistry and artificial enzymes: catalysis by design. Acc. Chem. Res. 28, 146–153 (1995).

    Article  CAS  Google Scholar 

  2. Dong, Z., Luo, Q. & Liu, J . Artificial enzymes based on supramolecular scaffolds. Chem. Soc. Rev. 41, 7890–7908 (2012).

    Article  CAS  Google Scholar 

  3. Kuah, E., Toh, S., Yee, J., Ma, Q. & Gao, Z . Enzyme mimics: advances and applications. Chem. Eur. J. 22, 8404–8430 (2016).

    Article  CAS  Google Scholar 

  4. Lund, K. et al. Molecular robots guided by prescriptive landscapes. Nature 465, 206–210 (2010).

    Article  CAS  Google Scholar 

  5. Wickham, S. F. J. et al. A DNA-based molecular motor that can navigate a network of tracks. Nat. Nanotechnol. 7, 169–173 (2012).

    Article  CAS  Google Scholar 

  6. Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    Article  CAS  Google Scholar 

  7. Browne, W. R. & Feringa, B. L . Making molecular machines work. Nat. Nanotechnol. 1, 25–35 (2006).

    Article  CAS  Google Scholar 

  8. van Dongen, S. F. M., Cantekin, S., Elemans, J. A. A. W., Rowan, A. E. & Nolte, R. J. M. Functional interlocked systems. Chem. Soc. Rev. 43, 99–122 (2014).

    Article  CAS  Google Scholar 

  9. Epstein, I. R. & Xu, B. Reaction-diffusion processes at the nano- and microscales. Nat. Nanotechnol. 11, 312–319 (2016).

    Article  CAS  Google Scholar 

  10. Boekhoven, J., Hendriksen, W. E., Koper, G. J. M., Eelkema, R. & van Esch, J. H. Transient assembly of active materials fueled by a chemical reaction. Science 349, 1075–1079 (2015).

    Article  CAS  Google Scholar 

  11. Sadownik, J. W., Mattia, E., Nowak, P. & Otto, S. Diversification of self-replicating molecules. Nat. Chem. 8, 264–269 (2016).

    Article  CAS  Google Scholar 

  12. Lewandowski, B. et al. Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339, 189–193 (2013).

    Article  CAS  Google Scholar 

  13. Korevaar, P. A. et al. Pathway complexity in supramolecular polymerization. Nature 481, 492–496 (2012).

    Article  CAS  Google Scholar 

  14. Aliprandi, A., Mauro, M. & De Cola, L. Controlling and imaging biomimetic self-assembly. Nat. Chem. 8, 10–15 (2016).

    Article  CAS  Google Scholar 

  15. Korevaar, P. A., Newcomb, C. J., Meijer, E. W. & Stupp, S. I. Pathway selection in peptide amphiphile assembly. J. Am. Chem. Soc. 136, 8540–8543 (2014).

    Article  CAS  Google Scholar 

  16. Yu, Z. et al. Simultaneous covalent and noncovalent hybrid polymerizations. Science 351, 497–502 (2016).

    Article  CAS  Google Scholar 

  17. Zhao, D. & Moore, J. S. Nucleation-elongation: a mechanism for cooperative supramolecular polymerization. Org. Biomol. Chem. 1, 3471–3491 (2003).

    Article  CAS  Google Scholar 

  18. Oosawa, F. & Asakura, S. Thermodynamics of the Polymerization of Protein (Academic Press, 1975).

    Google Scholar 

  19. Luders, J. & Stearns, T. Microtubule-organizing centres: a re-evaluation. Nat. Rev. Mol. Cell Biol. 8, 161–167 (2007).

    Article  Google Scholar 

  20. Dominguez, R. & Holmes, K. C . Actin structure and function. Annu. Rev. Biophys. 40, 169–186 (2011).

    Article  CAS  Google Scholar 

  21. De Greef, T. F. A. et al. Supramolecular polymerization. Chem. Rev. 109, 5687–5754 (2009).

    Article  CAS  Google Scholar 

  22. McHale, R., Patterson, J. P., Zetterlund, P. B. & O'Reilly, R. K. Biomimetic radical polymerization via cooperative assembly of segregating templates. Nat. Chem. 4, 491–497 (2012).

    Article  CAS  Google Scholar 

  23. Lu, H., Wang, J., Lin, Y. & Cheng, J. One-pot synthesis of brush-like polymers via integrated ring-opening metathesis polymerization and polymerization of amino acid N- carboxyanhydrides. J. Am. Chem. Soc. 131, 13582–13583 (2009).

    Article  CAS  Google Scholar 

  24. Lu, H. & Cheng, J. N-Trimethylsilyl amines for controlled ring-opening polymerization of amino acid N-carboxyanhydrides and facile end froup functionalization of polypeptides. J. Am. Chem. Soc. 130, 12562–12563 (2008).

    Article  CAS  Google Scholar 

  25. Goodman, M., Verdini, A. S., Toniolo, C., Phillips, W. D. & Bovey, F. A. Sensitive criteria for the critical size for helix formation in oligopeptides. Proc. Natl Acad. Sci. USA 64, 444–450 (1969).

    Article  CAS  Google Scholar 

  26. Rinaudo, M. & Domard, A. Circular dichroism studies on α-L-glutamic acid oligomers in solution. J. Am. Chem. Soc. 98, 6360–6364 (1976).

    Article  CAS  Google Scholar 

  27. Mutter, M. The influence of the macromolecular protecting group in conformational studies on polyoxyethylene-bound peptides. Macromolecules 10, 1413–1414 (1977).

    Article  CAS  Google Scholar 

  28. Ballard, D. G. H. & Bamford, C. H. The heterogeneous polymerization of α-N-carboxyamino-acid anhydrides. J. Chem. Soc. 1039–1044 (1959).

  29. Kōmoto, T., Akaishi, T., Ōya, M. & Kawai, T. Crystallization of polypeptides in the course of polymerization. I.: Growth mechanism of poly-L- and DL-alanine crystals. Makromol. Chem. 154, 151–159 (1972).

    Article  Google Scholar 

  30. Hadjichristidis, N., Iatrou, H., Pitsikalis, M. & Sakellariou, G. Synthesis of well-defined polypeptide-based materials via the ring-opening polymerization of α-amino acid N-carboxyanhydrides. Chem. Rev. 109, 5528–5578 (2009).

    Article  CAS  Google Scholar 

  31. Deming, T. J. Polypeptide and Polypeptide Hybrid Copolymer Synthesis via NCA Polymerization (Springer, 2006).

    Book  Google Scholar 

  32. Blout, E. R. & Idelson, M. Polypeptides IX. the kinetics of strong-base initiated polymerizations of amino acid-N-carboxyanhydrides. J. Am. Chem. Soc. 78, 3857–3858 (1956).

    Article  CAS  Google Scholar 

  33. Lu, H. & Cheng, J. Hexamethyldisilazane-mediated controlled polymerization of α-amino acid N-carboxyanhydrides. J. Am. Chem. Soc. 129, 14114–14115 (2007).

    Article  CAS  Google Scholar 

  34. Lundberg, R. D. & Doty, P. Polypeptides XVII. a study of the kinetics of the primary amine- initiated polymerization of N-carboxy-anhydrides with special reference to configurational and stereochemical effects. J. Am. Chem. Soc. 79, 3961–3972 (1957).

    Article  CAS  Google Scholar 

  35. Blout, E. R. & Asadourian, A. Polypeptides. V. the infrared spectra of polypeptides derived from γ-benzyl-L-glutamate. J. Am. Chem. Soc. 78, 955–961 (1956).

    Article  CAS  Google Scholar 

  36. Ling, J. & Huang, Y. Understanding the ring-opening reaction of α-amino acid N-carboxyanhydride in an amine-mediated living polymerization: a DFT study. Macromol. Chem. Phys. 211, 1708–1711 (2010).

    Article  CAS  Google Scholar 

  37. Kricheldorf, H. R. α-Aminoacid-N-Carboxy-Anhydrides and Related Heterocycles (Springer, 1987).

    Book  Google Scholar 

  38. Weingarten, H. Kinetics and mechanisms of the polymerization of N-carboxy-α-amino acid anhydrides. J. Am. Chem. Soc. 80, 352–355 (1958).

    Article  CAS  Google Scholar 

  39. Kelly, D. R. & Roberts, S. M . The mechanism of polyleucine catalysed asymmetric epoxidation. Chem. Commun. 2018–2020 (2004).

  40. Mathew, S. P., Gunathilagan, S., Roberts, S. M. & Blackmond, D. G. Mechanistic insights from reaction progress kinetic analysis of the polypeptide-catalyzed epoxidation of chalcone. Org. Lett. 7, 4847–4850 (2005).

    Article  CAS  Google Scholar 

  41. Aragonès, A. C. et al. Electrostatic catalysis of a Diels–Alder reaction. Nature 531, 88–91 (2016).

    Article  Google Scholar 

  42. Yu, M., Nowak, A. P., Deming, T. J. & Pochan, D. J. Methylated mono- and diethyleneglycol functionalized polylysines: nonionic, α-helical, water-soluble polypeptides. J. Am. Chem. Soc. 121, 12210–12211 (1999).

    Article  CAS  Google Scholar 

  43. Rzayev, J. Synthesis of polystyrene−polylactide bottlebrush block copolymers and their melt self-assembly into large domain nanostructures. Macromolecules 42, 2135–2141 (2009).

    Article  CAS  Google Scholar 

  44. Neugebauer, D., Sumerlin, B. S., Matyjaszewski, K., Goodhart, B. & Sheiko, S. S . How dense are cylindrical brushes grafted from a multifunctional macroinitiator? Polymer 45, 8173–8179 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the US National Science Foundation (CHE-1308485 and CHE-1508710 to J.C. & DMR-1150742 to Y.L.). AFM was carried out in part in the Frederick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois.

Author information

Authors and Affiliations

Authors

Contributions

R.B., J.C. and Y.L. conceived the idea of the project. R.B. and Z.S. performed the experimental work. Y.L. and H.F. performed the kinetic modelling. R.B., Y.L., H.F., and J.C. wrote the manuscript with contributions from all authors. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yao Lin or Jianjun Cheng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4886 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baumgartner, R., Fu, H., Song, Z. et al. Cooperative polymerization of α-helices induced by macromolecular architecture. Nature Chem 9, 614–622 (2017). https://doi.org/10.1038/nchem.2712

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2712

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing