Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Asymmetric silver-catalysed intermolecular bromotrifluoromethoxylation of alkenes with a new trifluoromethoxylation reagent

Abstract

Fluorinated organic compounds are becoming increasingly important in pharmaceuticals, agrochemicals and materials science. The introduction of trifluoromethoxy groups into new drugs and agrochemicals has attracted much attention due to their strongly electron-withdrawing nature and high lipophilicity. However, synthesis of trifluoromethoxylated organic molecules is difficult owing to the decomposition of trifluoromethoxide anion and β-fluoride elimination from transition-metal–trifluoromethoxide complexes, and no catalytic enantioselective trifluoromethoxylation reaction has been reported until now. Here, we present an example of an asymmetric silver-catalysed intermolecular bromotrifluoromethoxylation of alkenes with trifluoromethyl arylsulfonate (TFMS) as a new trifluoromethoxylation reagent. Compared to other trifluoromethoxylation reagents, TFMS is easily prepared and thermally stable with good reactivity. In addition, this reaction is operationally simple, scalable and proceeds under mild reaction conditions. Furthermore, broad scope and good functional group compatibility has been demonstrated by application of the method to the bromotrifluoromethoxylation of double bonds in natural products and natural product derivatives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trifluoromethyl aryl sulfonate (TFMS) as a new trifluoromethoxylation reagent.
Figure 2: Insights into the reaction mechanism of asymmetric silver-catalysed intermolecular bromotrifluoromethoxylation of alkenes.

Similar content being viewed by others

References

  1. Müller, K., Faeh, C. & Diederich, F. Fluorine in pharmaceuticals: looking beyond intuition. Science 317, 1881–1886 (2007).

    PubMed  Google Scholar 

  2. Berger, R., Resnati, G., Metrangolo, P., Weber, E. & Hulliger, J. Organic fluorine compounds: a great opportunity for enhanced materials properties. Chem. Soc. Rev. 40, 3496–3508 (2011).

    CAS  PubMed  Google Scholar 

  3. Isanbor, C. & O'Hagan, D. Fluorine in medicinal chemistry: a review of anti-cancer agents. J. Fluorine Chem. 127, 303–319 (2006).

    CAS  Google Scholar 

  4. Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 37, 320–330 (2008).

    CAS  PubMed  Google Scholar 

  5. Jeschke, P. The unique role of fluorine in the design of active ingredients for modern crop protection. ChemBioChem. 5, 570–589 (2004).

    CAS  Google Scholar 

  6. Shimizu, M. & Hiyama, T. Modern synthetic methods for fluorine-substituted target molecules. Angew. Chem. Int. Ed. 44, 214–231 (2005).

    CAS  Google Scholar 

  7. Leroux, F., Jeschke, P. & Schlosser, M. α-Fluorinated ethers, thioethers, and amines: anomerically biased species. Chem. Rev. 105, 827–856 (2005).

    CAS  PubMed  Google Scholar 

  8. Jeschke, P., Baston, E . & Leroux, F. R. α-Fluorinated ethers as “exotic” entity in medicinal chemistry. Mini-Rev. Med. Chem. 7, 1027–1034 (2007).

    CAS  PubMed  Google Scholar 

  9. Manteau, B., Pazenok, S., Vors, J. P. & Leroux, F. R. New trends in the chemistry of α-fluorinated ethers, thioethers, amines and phosphines. J. Fluorine Chem. 131, 140–158 (2010).

    CAS  Google Scholar 

  10. Landelle, G., Panossian, A. & Leroux, F. R. Trifluoromethyl ethers and -thioethers as tools for medicinal chemistry and drug discovery. Curr. Top. Med. Chem. 14, 941–951 (2014).

    CAS  PubMed  Google Scholar 

  11. Leroux, F., Manteau, B., Vors, J. & Pazenok, S. Trifluoromethyl ethers – synthesis and properties of an unusual substituent. Beilstein J. Org. Chem. 4, 13 (2008).

    PubMed  PubMed Central  Google Scholar 

  12. Liang, T., Neumann, C. N. & Ritter, T. Introduction of fluorine and fluorine-containing functional groups. Angew. Chem. Int. Ed. 52, 8214–8264 (2013).

    CAS  Google Scholar 

  13. Tlili, A., Toulgoat, F. & Billard, T. Synthetic approaches to trifluoromethoxy-substituted compounds. Angew. Chem. Int. Ed. 55, 11726–11735 (2016).

    CAS  Google Scholar 

  14. Yagupol'skii, L. M. Synthesis of derivatives of phenyl trifluoromethyl ether. Dokl. Akad. Nauk SSSR 105, 100–102 (1955).

    CAS  Google Scholar 

  15. Sheppard, W. A. α-Fluorinated ethers. I. aryl fluoroalkyl ethers. J. Org. Chem. 29, 1–11 (1964).

    CAS  Google Scholar 

  16. Kuroboshi, M., Suzuki, K. & Hiyama, T. Oxidative desulfurization-fluorination of xanthates. A convenient synthesis of trifluoromethyl ethers and difluoro (methylthio) methyl ethers. Tetrahedron Lett. 33, 4173–4176 (1992).

    CAS  Google Scholar 

  17. Umemoto, T. Electrophilic perfluoroalkylating agents. Chem. Rev. 96, 1757–1778 (1996).

    CAS  PubMed  Google Scholar 

  18. Umemoto, T., Adachi, K. & Ishihara, S. CF3 oxonium salts, O-(trifluoromethyl) dibenzofuranium salts: in situ synthesis, properties, and application as a real CF3+ species reagent. J. Org. Chem. 72, 6905–6917 (2007).

    CAS  PubMed  Google Scholar 

  19. Stanek, K., Koller, R. & Togni, A. Reactivity of a 10-I-3 hypervalent iodine trifluoromethylation reagent with phenols. J. Org. Chem. 73, 7678–7685 (2008).

    CAS  PubMed  Google Scholar 

  20. Fantasia, S., Welch, J. M. & Togni, A. Reactivity of a hypervalent iodine trifluoromethylating reagent toward THF: ring opening and formation of trifluoromethyl ethers. J. Org. Chem. 75, 1779–1782 (2010).

    CAS  PubMed  Google Scholar 

  21. Koller, R. et al. Zinc-mediated formation of trifluoromethyl ethers from alcohols and hypervalent iodine trifluoromethylation reagents. Angew. Chem. Int. Ed. 48, 4332–4336 (2009).

    CAS  Google Scholar 

  22. Liang, A. et al. Regioselective synthesis of N-heteroaromatic trifluoromethoxy compounds by direct O−CF3 bond formation. Chem. Eur. J. 22, 5102–5106 (2016).

    CAS  PubMed  Google Scholar 

  23. Brantley, J. N., Samant, A. V. & Toste, F. D. Isolation and reactivity of trifluoromethyl iodonium salts. ACS Cent. Sci. 2, 341–350 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hojczyk, K. N., Feng, P., Zhan, C. & Ngai, M. Y. Trifluoromethoxylation of arenes: synthesis of ortho-trifluoromethoxylated aniline derivatives by OCF3 migration. Angew. Chem. Int. Ed. 53, 14559–14563 (2014).

    CAS  Google Scholar 

  25. Feng, P., Lee, K. N., Lee, J. W., Zhan, C. & Ngai, M. Y. Access to a new class of synthetic building blocks via trifluoromethoxylation of pyridines and pyrimidines. Chem. Sci. 7, 424–429 (2016).

    CAS  PubMed  Google Scholar 

  26. Lee, K. N., Lei, Z., Morales-Rivera, C. A., Liu, P. & Ngai, M. Y. Mechanistic studies on intramolecular C–H trifluoromethoxylation of (hetero) arenes via OCF3-migration. Org. Biomol. Chem. 14, 5599–5605 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang, C., Liang, T., Harada, S., Lee, E. & Ritter, T. Silver-mediated trifluoromethoxylation of aryl stannanes and arylboronic acids. J. Am. Chem. Soc. 133, 13308–13310 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, J. et al. Silver-mediated oxidative trifluoromethylation of phenols: direct synthesis of aryl trifluoromethyl ethers. Angew. Chem. Int. Ed. 54, 11839–11842 (2015).

    CAS  Google Scholar 

  29. Liu, J., Xu, X. & Qing, F. Silver-mediated oxidative trifluoromethylation of alcohols to alkyl trifluoromethyl ethers. Org. Lett. 17, 5048–5051 (2015).

    CAS  PubMed  Google Scholar 

  30. Chen, C., Chen, P. & Liu, G. Palladium-catalyzed intramolecular aminotrifluoromethoxylation of alkenes. J. Am. Chem. Soc. 137, 15648–15651 (2015).

    CAS  PubMed  Google Scholar 

  31. Zha, G. et al. Silver-mediated direct trifluoromethoxylation of α-diazo esters via the OCF3 anion. Chem. Commun. 52, 7458–7461 (2016).

    CAS  Google Scholar 

  32. Zhang, Q. et al. Fluorodecarboxylation for the synthesis of trifluoromethyl aryl ethers. Angew. Chem. Int. Ed. 55, 9758–9762 (2016).

    CAS  Google Scholar 

  33. Zhang, C. & Vicic, D. A. Oxygen-bound trifluoromethoxide complexes of copper and gold. Organometallics 31, 7812–7815 (2012).

    CAS  Google Scholar 

  34. Chen, S. et al. Aryl-BIAN-ligated silver (I) trifluoromethoxide complex. Dalton Trans. 44, 19682–19686 (2015).

    CAS  PubMed  Google Scholar 

  35. Rozen, S. Selective fluorinations by reagents containing the OF group. Chem. Rev. 96, 1717–1736 (1996).

    CAS  PubMed  Google Scholar 

  36. Noftle, R. E. & Cady, G. H. Preparation and properties of bis (trifluoromethylsulfuryl) peroxide and trifluoromethyl trifluoromethanesulfonate. Inorg. Chem. 4, 1010–1012 (1965).

    CAS  Google Scholar 

  37. Taylor, S. L. & Martin, J. C. Trifluoromethyl triflate: synthesis and reactions. J. Org. Chem. 52, 4147–4156 (1987).

    CAS  Google Scholar 

  38. Kolomeitsev, A. A., Vorobyev, M. & Gillandt, H. Versatile application of trifluoromethyl triflate. Tetrahedron Lett. 49, 449–454 (2008).

    CAS  Google Scholar 

  39. Marrec, O., Billard, T., Vors, J., Pazenok, S. & Langlois, B. R. A new and direct trifluoromethoxylation of aliphatic substrates with 2, 4-dinitro (trifluoromethoxy) benzene. Adv. Synth. Catal. 352, 2831–2837 (2010).

    CAS  Google Scholar 

  40. Koller, R., Huchet, Q., Battaglia, P., Welch, J. M. & Togni, A . Acid-mediated formation of trifluoromethyl sulfonates from sulfonic acids and a hypervalent iodine trifluoromethylating agent. Chem. Commun. 2009, 5993–5995 (2009).

    Google Scholar 

  41. Sokolenko, T. M., Davydova, Y. A. & Yagupolskii, Y. L. Efficient synthesis of 5′-fluoroalkoxythiazoles via α-bromo-α-fluoroalkoxyacetophenones Hantzsch type cyclization with thioureas or thioamides. J. Fluorine Chem. 136, 20–25 (2012).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors dedicate this manuscript to Qi-lin Zhou on the occasion of his sixtieth birthday. We are grateful for financial support from the State Key Laboratory of Elemento-Organic Chemistry, the National Key Research and Development Program of China (2016YFA0602900) and NFSC (21402098, 21421062, 21522205).

Author information

Authors and Affiliations

Authors

Contributions

S.G., F.C., R.G. and L.W. performed the experiments and analysed the data. P.T. designed and directed the project. P.T. wrote the manuscript. All of the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Pingping Tang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 8374 kb)

Supplementary information

Crystallographic data for compound 3i. (CIF 213 kb)

Supplementary information

Crystallographic data for compound 3t. (CIF 661 kb)

Supplementary information

Crystallographic data for compound 3x. (CIF 394 kb)

Supplementary information

Crystallographic data for compound 5a. (CIF 256 kb)

Supplementary information

Crystallographic data for compound 5b. (CIF 643 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Cong, F., Guo, R. et al. Asymmetric silver-catalysed intermolecular bromotrifluoromethoxylation of alkenes with a new trifluoromethoxylation reagent. Nature Chem 9, 546–551 (2017). https://doi.org/10.1038/nchem.2711

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2711

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing