Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Click and chemically triggered declick reactions through reversible amine and thiol coupling via a conjugate acceptor

Abstract

The coupling and decoupling of molecular units is a fundamental undertaking of organic chemistry. Herein we report the use of a very simple conjugate acceptor, derived from Meldrum's acid, for the sequential ‘clicking’ together of an amine and a thiol in aqueous conditions at neutral pH. Subsequently, this linkage can be ‘declicked’ by a chemical trigger to release the original amine and thiol undisturbed. The reactivity differs from that of other crosslinking agents because the selectivity for sequential functionalization derives from an altering of the electrophilicity of the conjugate acceptor on the addition of the amine. We describe the use of the procedure to modify proteins, create multicomponent libraries and synthesize oligomers, all of which can be declicked to their starting components in a controlled fashion when desired. Owing to the mild reaction conditions and ease of use in a variety of applications, the method is predicted to have wide utility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A general schematic of amine and thiol addition to the conjugate acceptor.
Figure 2: The conjugate acceptor 1 can be used to make branched assemblies.
Figure 3: The conjugate acceptor 1 can be used to functionalize a surface reversibly with thiols.
Figure 4: The conjugate acceptor 1 can be used to functionalize peptides reversibly with small molecules and other peptides.
Figure 5: The conjugate acceptor 1 can be used to functionalize a protein reversibly with thiol-terminated PEG chains.
Figure 6: The conjugate acceptor 1 can be used to synthesize oligomers of different lengths.

Similar content being viewed by others

References

  1. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    Article  CAS  Google Scholar 

  2. Hoyle, C. E. & Bowman, C. N. Thiol-ene click chemistry. Angew. Chem. Int. Ed. 49, 1540–1573 (2010).

    Article  CAS  Google Scholar 

  3. Becer, C. R., Hoogenboom, R. & Schubert, U. S. Click chemistry beyond metal-catalyzed cycloaddition. Angew. Chem. Int. Ed. 48, 4900–4908 (2009).

    Article  CAS  Google Scholar 

  4. Chmielewski, M. K. Protecting of a thermolabile protecting group: ‘click–clack’ approach. Org. Lett. 11, 3742–3745 (2009).

    Article  CAS  Google Scholar 

  5. Baskin, J. M. et al. Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl Acad. Sci. USA 104, 16793–16797 (2007).

    Article  CAS  Google Scholar 

  6. Jewett, J. C., Sletten, E. M. & Bertozzi, C. R. Rapid Cu-free click chemistry with readily synthesized biarylazacyclooctynones. J. Am. Chem. Soc. 132, 3688–3690 (2010).

    Article  CAS  Google Scholar 

  7. Chang, P. V. et al. Copper-free click chemistry in living animals. Proc. Natl Acad. Sci. USA 107, 1821–1826 (2010).

    Article  CAS  Google Scholar 

  8. Huisgen, R. 1,3-Dipolar cycloadditions: past and future. Angew. Chem. Int. Ed. Engl. 2, 565–598 (1963).

    Article  Google Scholar 

  9. Huisgen, R. 1,3-Dipolar cycloadditions. Proc. Chem. Soc. 357–396 (1961).

  10. Huisgen, R. Kinetics and reaction mechanisms: selected examples from the experience of forty years. Pure Appl. Chem. 61, 613–628 (1989).

    Article  CAS  Google Scholar 

  11. Kolb, H. C. & Sharpless, K. B. The growing impact of click chemistry on drug discovery. Drug Discov. Today 8, 1128–1137 (2003).

    Article  CAS  Google Scholar 

  12. Moses, J. E. & Moorhouse, A. D. The growing applications of click chemistry. Chem. Soc. Rev. 36, 1249–1262 (2007).

    Article  CAS  Google Scholar 

  13. Brantley, J. N., Konda, S. S. M., Makarov, D. E. & Bielawski, C. W. Regiochemical effects on molecular stability: a mechanochemical evaluation of 1,4- and 1,5-disubstituted triazoles. J. Am. Chem. Soc. 134, 9882–9885 (2012).

    Article  CAS  Google Scholar 

  14. Cravotto, G. & Cintas, P. Harnessing mechanochemical effects with ultrasound-induced reactions. Chem. Sci. 3, 295–307 (2012).

    Article  CAS  Google Scholar 

  15. Diels, O. & Alder, K. Synthesen in der hydroaromatischen Reihe. Ber. Dtsch. Chem. Ges. 62, 2337–2372 (1929).

    Article  Google Scholar 

  16. Kwart, H. & King, K. The reverse Diels–Alder or retrodiene reaction. Chem. Rev. 68, 415–447 (1968).

    Article  CAS  Google Scholar 

  17. Trost, B. M., Ippen, J. & Vladuchick, W. C. The regioselectivity of the catalyzed and uncatalyzed Diels–Alder reaction. J. Am. Chem. Soc. 99, 8116–8118 (1977).

    Article  CAS  Google Scholar 

  18. Gandini, A. The furan/maleimide Diels–Alder reaction: a versatile click–unclick tool in macromolecular synthesis. Prog. Polym. Sci. 38, 1–29 (2013).

    Article  CAS  Google Scholar 

  19. Meng, J.-C., Averbuj, C., Lewis, W. G., Siuzdak, G. & Finn, M. G. Cleavable linkers for porous silicon-based mass spectrometry. Angew. Chem. Int. Ed. 43, 1255–1260 (2004).

    Article  CAS  Google Scholar 

  20. Boul, P. J., Reutenauer, P. & Lehn, J.-M. Reversible Diels–Alder reactions for the generation of dynamic combinatorial libraries. Org. Lett. 7, 15–18 (2005).

    Article  CAS  Google Scholar 

  21. Hermanson, G. T. Bioconjugate Techniques (Academic, 2008).

    Google Scholar 

  22. Bielski, R. & Witczak, Z. Strategies for coupling molecular units if subsequent decoupling is required. Chem. Rev. 113, 2205–2243 (2013).

    Article  CAS  Google Scholar 

  23. Best, M. D. Click chemistry and bioorthogonal reactions: unprecedented selectivity in the labeling of biological molecules. Biochemistry 48, 6571–6584 (2009).

    Article  CAS  Google Scholar 

  24. Kalia, J. & Raines, R. T. Advances in bioconjugation. Curr. Org. Chem. 14, 138–147 (2010).

    Article  CAS  Google Scholar 

  25. Canalle, L. A., Löwik, D. W. P. M. & van Hest, J. C. M. Polypeptide–polymer bioconjugates. Chem. Soc. Rev. 39, 329–353 (2010).

    Article  CAS  Google Scholar 

  26. Ulrich, S., Boturyn, D., Marra, A., Renaudet, O. & Dumy, P. Oxime ligation: a chemoselective click-type reaction for accessing multifunctional biomolecular constructs. Chemistry 20, 34–41 (2014).

    Article  CAS  Google Scholar 

  27. Otto, S., Furlan, R. L. E. & Sanders, J. K. M. Selection and amplification of hosts from dynamic combinatorial libraries of macrocyclic disulfides. Science 297, 590–593 (2002).

    Article  CAS  Google Scholar 

  28. Shi, B. & Greaney, M. F. Reversible Michael addition of thiols as a new tool for dynamic combinatorial chemistry. Chem. Commun. 886–888 (2005).

  29. Corbett, P. T. et al. Dynamic combinatorial chemistry. Chem. Rev. 106, 3652–3711 (2006).

    Article  CAS  Google Scholar 

  30. Lehn, J.-M. Chemistry: dynamic combinatorial chemistry. Science 291, 2331–2332 (2001).

    Article  CAS  Google Scholar 

  31. Joshi, G. & Anslyn, E. V. Dynamic thiol exchange with β-sulfido-α,β-unsaturated carbonyl compounds and dithianes. Org. Lett. 14, 4714–4717 (2012).

    Article  CAS  Google Scholar 

  32. Zhong, Y., Xu, Y. & Anslyn, E. V. Studies of reversible conjugate additions. Eur. J. Org. Chem. 2013, 5017–5021 (2013).

    Article  CAS  Google Scholar 

  33. Shi, B., Stevenson, R., Campopiano, D. J. & Greaney, M. F. Discovery of glutathione S-transferase inhibitors using dynamic combinatorial chemistry. J. Am. Chem. Soc. 128, 8459–8467 (2006).

    Article  CAS  Google Scholar 

  34. Lo, W.-J. et al. Enzymatic and nonenzymatic synthesis of glutathione conjugates: application to the understanding of a parasite's defense system and alternative to the discovery of potent glutathione S-transferase inhibitors. Bioconjug. Chem. 18, 109–120 (2007).

    Article  CAS  Google Scholar 

  35. Rim, C., Lahey, L. J., Patel, V. G., Zhang, H. & Son, D. Y. Thiol-ene reactions of 1,3,5-triacryloylhexahydro-1,3,5-triazine (TAT): facile access to functional tripodal thioethers. Tetrahedron Lett. 50, 745–747 (2009).

    Article  CAS  Google Scholar 

  36. Mather, B. D., Viswanathan, K., Miller, K. M. & Long, T. E. Michael addition reactions in macromolecular design for emerging technologies. Prog. Polym. Sci. 31, 487–531 (2006).

    Article  CAS  Google Scholar 

  37. Ben Cheikh, A. et al. Synthesis of α-cyano carbonyl compounds by flash vacuum thermolysis of (alkylamino)methylene derivatives of Meldrum's acid. Evidence for facile 1,3-shifts of alkylamino and alkylthio groups in imidoylketene intermediates. J. Org. Chem. 56, 970–975 (1991).

    Article  CAS  Google Scholar 

  38. Huang, X. & Chen, B.-C. Synthesis of bisalkylthiolydine derivatives of Meldrum's acid and barbituric acid. Synthesis 967–968 (1986).

  39. Ye, F.-C., Chen, B.-C. & Huang, X. Synthesis of 7-substituted 5-oxo-5H-thiazolo[3,2-a]pyrimidine-6-carboxylic acids, 2-substituted 4-oxo-4H-pyrido[1,2-a]pyrimidine-3-carboxylic acids, and 2,6-disubstituted 4-quinolones from Meldrum's acid derivatives. Synthesis 317–320 (1989).

  40. Christie, R. J., Anderson, D. J. & Grainger, D. W. Comparison of hydrazone heterobifunctional cross-linking agents for reversible conjugation of thiol-containing chemistry. Bioconjug. Chem. 21, 1779–1787 (2010).

    Article  CAS  Google Scholar 

  41. Højfeldt, J. W., Blakskjaer, P. & Gothelf, K. V. A cleavable amino-thiol linker for reversible linking of amines to DNA. J. Org. Chem. 71, 9556–9559 (2006).

    Article  Google Scholar 

  42. Dawson, P., Muir, T., Clark-Lewis, I. & Kent, S. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    Article  CAS  Google Scholar 

  43. Canne, L. E., Bark, S. J. & Kent, S. B. H. Extending the applicability of native chemical ligation. J. Am. Chem. Soc. 118, 5891–5896 (1996).

    Article  CAS  Google Scholar 

  44. Otto, S., Furlan, R. L. & Sanders, J. K. Dynamic combinatorial chemistry. Drug Discov. Today 7, 117–125 (2002).

    Article  CAS  Google Scholar 

  45. Liang, R. et al. Polyvalent binding to carbohydrates immobilized on an insoluble resin. Proc. Natl Acad. Sci. USA 94, 10554–10559 (1997).

    Article  CAS  Google Scholar 

  46. McNaughton, B. R. & Miller, B. L. Resin-bound dynamic combinatorial chemistry. Org. Lett. 8, 1803–1806 (2006).

    Article  CAS  Google Scholar 

  47. Raju, B. & Kogan, T. P. Use of halomethyl resins to immobilize amines: an efficient method for synthesis of sulfonamides and amides on a solid support. Tetrahedron Lett. 38, 4965–4968 (1997).

    Article  CAS  Google Scholar 

  48. Veronese, F. M. Peptide and protein PEGylation. Biomaterials 22, 405–417 (2001).

    Article  CAS  Google Scholar 

  49. Roberts, M. J., Bentley, M. D. & Harris, J. M. Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Rev. 64, 116–127 (2012).

    Article  Google Scholar 

  50. Schumacher, F. F. et al. In situ maleimide bridging of disulfides and a new approach to protein PEGylation. Bioconjug. Chem. 22, 132–136 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Defense Advanced Research Projects Agency (N66001-14-2-4051 to E.V.A.), the National Science Foundation (CHE-1212971 to E.V.A.; CHE1402753 to J.S.B.), Welch Regents Chair (F-0046 to E.V.A.) and the Welch Foundation (F-1155 to J.S.B.).

Author information

Authors and Affiliations

Authors

Contributions

K.L.D. helped conceive and design the experiments, performed them and analysed the data, and wrote the first draft of the paper. I.V.K. also helped conceive and design experiments, carried them out and analysed the data, and edited the paper. S.A.R. analysed synthesized compounds using mass spectrometry. J.L.B. helped synthesize starting materials for experiments performed herein. Y.Z. performed preliminary experiments that demonstrated the utility of the Meldrum's acid conjugate acceptor 1. J.S.B. contributed analysis tools and E.V.A. conceived and/or designed experiments and edited the paper.

Corresponding author

Correspondence to Eric V. Anslyn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 9554 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diehl, K., Kolesnichenko, I., Robotham, S. et al. Click and chemically triggered declick reactions through reversible amine and thiol coupling via a conjugate acceptor. Nature Chem 8, 968–973 (2016). https://doi.org/10.1038/nchem.2601

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2601

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing