Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mass spectrometry captures off-target drug binding and provides mechanistic insights into the human metalloprotease ZMPSTE24

Abstract

Off-target binding of hydrophobic drugs can lead to unwanted side effects, either through specific or non-specific binding to unintended membrane protein targets. However, distinguishing the binding of drugs to membrane proteins from that of detergents, lipids and cofactors is challenging. Here, we use high-resolution mass spectrometry to study the effects of HIV protease inhibitors on the human zinc metalloprotease ZMPSTE24. This intramembrane protease plays a major role in converting prelamin A to mature lamin A. We monitored the proteolysis of farnesylated prelamin A peptide by ZMPSTE24 and unexpectedly found retention of the C-terminal peptide product with the enzyme. We also resolved binding of zinc, lipids and HIV protease inhibitors and showed that drug binding blocked prelamin A peptide cleavage and conferred stability to ZMPSTE24. Our results not only have relevance for the progeria-like side effects of certain HIV protease inhibitor drugs, but also highlight new approaches for documenting off-target drug binding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mass spectrum of ZMPSTE24 reveals zinc binding.
Figure 2: Mass spectra allow the cleavage of the prelamin peptide by ZMPSTE24 to be monitored in real time.
Figure 3: Mass spectra recorded after competitive binding of HIV PI drugs to ZMPSTE24.
Figure 4: Collision-induced unfolding reveals differences in the unfolding trajectories of free ZMPSTE24 compared with its drug-bound states.

Similar content being viewed by others

References

  1. Wolfe, M. S. & Kopan, R. Intramembrane proteolysis: theme and variations. Science 305, 1119–1123 (2004).

    Article  CAS  Google Scholar 

  2. Marcoux, J. et al. Mass spectrometry reveals synergistic effects of nucleotides, lipids, and drugs binding to a multidrug resistance efflux pump. Proc. Natl Acad. Sci. USA 110, 9704–9709 (2013).

    Article  CAS  Google Scholar 

  3. Hopper, J. T. & Robinson, C. V. Mass spectrometry quantifies protein interactions—from molecular chaperones to membrane porins. Angew. Chem. Int. Ed. 53, 14002–14015 (2014).

    Article  CAS  Google Scholar 

  4. Freeman, M. The rhomboid-like superfamily: molecular mechanisms and biological roles. Annu. Rev. Cell Dev. Biol. 30, 235–254 (2014).

    Article  CAS  Google Scholar 

  5. Avci, D. & Lemberg, M. K. Clipping or extracting: two ways to membrane protein degradation. Trends Cell Biol. 25, 611–622 (2015).

    Article  CAS  Google Scholar 

  6. Quigley, A. et al. The structural basis of ZMPSTE24-dependent laminopathies. Science 339, 1604–1607 (2013).

    Article  CAS  Google Scholar 

  7. Pryor, E. E. Jr et al. Structure of the integral membrane protein CAAX protease Ste24p. Science 339, 1600–1604 (2013).

    Article  CAS  Google Scholar 

  8. Young, S. G., Fong, L. G. & Michaelis, S. Prelamin A, Zmpste24, misshapen cell nuclei, and progeria—new evidence suggesting that protein farnesylation could be important for disease pathogenesis. J. Lipid Res. 46, 2531–2558 (2005).

    Article  CAS  Google Scholar 

  9. Manolaridis, I. et al. Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1. Nature 504, 301–305 (2013).

    Article  CAS  Google Scholar 

  10. Davies, B. S., Fong, L. G., Yang, S. H., Coffinier, C. & Young, S. G. The posttranslational processing of prelamin A and disease. Annu. Rev. Genom. Hum. Genet. 10, 153–174 (2009).

    Article  CAS  Google Scholar 

  11. Eriksson, M. et al. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423, 293–298 (2003).

    Article  CAS  Google Scholar 

  12. Moulson, C. L. et al. Increased progerin expression associated with unusual LMNA mutations causes severe progeroid syndromes. Hum. Mutat. 28, 882–889 (2007).

    Article  CAS  Google Scholar 

  13. Shackleton, S. et al. Compound heterozygous ZMPSTE24 mutations reduce prelamin A processing and result in a severe progeroid phenotype. J. Med. Genet. 42, e36 (2005).

    Article  CAS  Google Scholar 

  14. Ahmad, Z., Zackai, E., Medne, L. & Garg, A. Early onset mandibuloacral dysplasia due to compound heterozygous mutations in ZMPSTE24. Am. J. Med. Genet. A 152A, 2703–2710 (2010).

    Article  Google Scholar 

  15. Barrowman, J., Wiley, P. A., Hudon-Miller, S. E., Hrycyna, C. A. & Michaelis, S. Human ZMPSTE24 disease mutations: residual proteolytic activity correlates with disease severity. Hum. Mol. Genet. 21, 4084–4093 (2012).

    Article  CAS  Google Scholar 

  16. Coffinier, C. et al. HIV protease inhibitors block the zinc metalloproteinase ZMPSTE24 and lead to an accumulation of prelamin A in cells. Proc. Natl Acad. Sci. USA 104, 13432–13437 (2007).

    Article  CAS  Google Scholar 

  17. Coffinier, C. et al. A potent HIV protease inhibitor, darunavir, does not inhibit ZMPSTE24 or lead to an accumulation of farnesyl–prelamin A in cells. J. Biol. Chem. 283, 9797–9804 (2008).

    Article  CAS  Google Scholar 

  18. Hudon, S. E. et al. HIV-protease inhibitors block the enzymatic activity of purified Ste24p. Biochem. Biophys. Res. Commun. 374, 365–368 (2008).

    Article  CAS  Google Scholar 

  19. Barrowman, J. & Michaelis, S. ZMPSTE24, an integral membrane zinc metalloprotease with a connection to progeroid disorders. Biol. Chem. 390, 761–773 (2009).

    Article  CAS  Google Scholar 

  20. Perrin, S. et al. HIV protease inhibitors do not cause the accumulation of prelamin A in PBMCs from patients receiving first line therapy: the ANRS EP45 ‘aging’ study. PLoS ONE 7, e53035 (2012).

    Article  CAS  Google Scholar 

  21. Agarwal, A. K., Fryns, J. P., Auchus, R. J. & Garg, A. Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum. Mol. Genet. 12, 1995–2001 (2003).

    Article  CAS  Google Scholar 

  22. Torres, R. A. & Lewis, W. Aging and HIV/AIDS: pathogenetic role of therapeutic side effects. Lab. Invest. 94, 120–128 (2014).

    Article  CAS  Google Scholar 

  23. Rose, R. J., Damoc, E., Denisov, E., Makarov, A. & Heck, A. J. High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat. Methods 9, 1084–1086 (2012).

    Article  CAS  Google Scholar 

  24. Gault, J. et al. High-resolution mass spectrometry of small molecules bound to membrane proteins. Nat. Methods 13, 333–336 (2016).

    Article  Google Scholar 

  25. Belov, M. E. et al. From protein complexes to subunit backbone fragments: a multi-stage approach to native mass spectrometry. Anal. Chem. 85, 11163–11173 (2013).

    Article  CAS  Google Scholar 

  26. Erba, E. B. & Zenobi, R. Mass spectrometric studies of dissociation constants of noncovalent complexes. Annu. Rep. Prog. Chem. C 107, 199–228 (2011).

    Article  CAS  Google Scholar 

  27. Clemmer, D. E., Hudgins, R. R. & Jarrold, M. F. Naked protein conformations: cytochrome c in the gas phase. J. Am. Chem. Soc. 117, 10141–10142 (1995).

    Article  CAS  Google Scholar 

  28. Gill, A. C., Jennings, K. R., Wyttenbach, T. & Bowers, M. T. Conformations of biopolymers in the gas phase: a new mass spectrometric method. Int. J. Mass Spectrom. 195–196, 685–697 (2000).

    Article  Google Scholar 

  29. Ruotolo, B. T. et al. Ion mobility-mass spectrometry reveals long-lived, unfolded intermediates in the dissociation of protein complexes. Angew Chem. Int. Ed. 46, 8001–8004 (2007).

    Article  CAS  Google Scholar 

  30. Laganowsky, A. et al. Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510, 172–175 (2014).

    Article  CAS  Google Scholar 

  31. Allison, T. M. et al. Quantifying the stabilizing effects of protein–ligand interactions in the gas phase. Nat. Commun. 6, 8551 (2015).

    Article  CAS  Google Scholar 

  32. Silvius, J. R. & l'Heureux, F. Fluorimetric evaluation of the affinities of isoprenylated peptides for lipid bilayers. Biochemistry 33, 3014–3022 (1994).

    Article  CAS  Google Scholar 

  33. Coffinier, C. et al. Direct synthesis of lamin A, bypassing prelamin A processing, causes misshapen nuclei in fibroblasts but no detectable pathology in mice. J. Biol. Chem. 285, 20818–20826 (2010).

    Article  CAS  Google Scholar 

  34. Toth, J. I. et al. Blocking protein farnesyltransferase improves nuclear shape in fibroblasts from humans with progeroid syndromes. Proc. Natl Acad. Sci. USA 102, 12873–12878 (2005).

    Article  CAS  Google Scholar 

  35. Yang, S. H. et al. Severe hepatocellular disease in mice lacking one or both CaaX prenyltransferases. J. Lipid Res. 53, 77–86 (2012).

    Article  CAS  Google Scholar 

  36. Lu, Z. Second generation HIV protease inhibitors against resistant virus. Exp. Opin. Drug Disc. 3, 775–786 (2008).

    Article  CAS  Google Scholar 

  37. Boffito, M. et al. Protein binding in antiretroviral therapies. AIDS Res. Hum. Retroviruses 19, 825–835 (2003).

    Article  CAS  Google Scholar 

  38. Solas, C. et al. Discrepancies between protease inhibitor concentrations and viral load in reservoirs and sanctuary sites in human immunodeficiency virus-infected patients. Antimicrob. Agents Chemother. 47, 238–243 (2003).

    Article  CAS  Google Scholar 

  39. Caron, M. et al. Human lipodystrophies linked to mutations in A-type lamins and to HIV protease inhibitor therapy are both associated with prelamin A accumulation, oxidative stress and premature cellular senescence. Cell Death Differ. 14, 1759–1767 (2007).

    Article  CAS  Google Scholar 

  40. Loo, J. A., DeJohn, D. E., Du, P., Stevenson, T. I. & Ogorzalek Loo, R. R. Application of mass spectrometry for target identification and characterization. Med. Res. Rev. 19, 307–319 (1999).

    Article  CAS  Google Scholar 

  41. Harvey, S. R. et al. Small-molecule inhibition of c-MYC:MAX leucine zipper formation is revealed by ion mobility mass spectrometry. J. Am. Chem. Soc. 134, 19384–19392 (2012).

    Article  CAS  Google Scholar 

  42. Pacholarz, K. J., Garlish, R. A., Taylor, R. J. & Barran, P. E. Mass spectrometry based tools to investigate protein–ligand interactions for drug discovery. Chem. Soc. Rev. 41, 4335–4355 (2012).

    Article  CAS  Google Scholar 

  43. Maple, H. J. et al. Application of the Exactive Plus EMR for automated protein–ligand screening by non-covalent mass spectrometry. Rapid Commun. Mass Spectrom. 28, 1561–1568 (2014).

    Article  CAS  Google Scholar 

  44. Jacobs, A. D. et al. Resolution of stepwise cooperativities of copper binding by the homotetrameric copper-sensitive operon repressor (CsoR): impact on structure and stability. Angew Chem. Int. Ed. 54, 12795–12799 (2015).

    Article  CAS  Google Scholar 

  45. Kell, D. B., Dobson, P. D., Bilsland, E. & Oliver, S. G. The promiscuous binding of pharmaceutical drugs and their transporter-mediated uptake into cells: what we (need to) know and how we can do so. Drug Discov. Today 18, 218–239 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by programme grants from the Medical Research Council (98101), the National Institutes of Health (NIH) and an ERC Advanced Investigator Award IMPRESS (26851). C.V.R. has a Wellcome Trust Investigator Award. E.P.C. and A.Q. are funded by the Structural Genomics Consortium, a registered charity (no. 1097737) that receives funds from AbbVie, Bayer, Boehringer Ingelheim, the Canada Foundation for Innovation, the Canadian Institutes for Health Research, Genome Canada, GlaxoSmithKline, Janssen, Lilly Canada, the Novartis Research Foundation, the Ontario Ministry of Economic Development and Innovation, Pfizer, Takeda and the Wellcome Trust (092809/Z/10/Z). E.P.C. and A.Q. are also funded by a Medical Research Council grant number MR/L017458/1. S.Mi. was funded for this work by NIH grant R01 GM041223. S.G.Y. was supported by NIH grants AG035626-10 and HL126551. The authors thank S. Wang and B. Rotty for purification of three of the protein samples used in this study. J.G. is a Junior Research Fellow at Queen's College, Oxford.

Author information

Authors and Affiliations

Authors

Contributions

S.Me. and C.V.R. designed the research with assistance from A.Q. and E.P.C. A.Q. and E.P.C. purified ZMPSTE24. S.Me. and J.G. carried out the mass spectrometry experiments. J.M. initiated preliminary mass spectrometry experiment. S.Mi. helped with new reagents. S.G.Y. performed the western blot analysis. S.Me. and C.V.R. wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to Carol V. Robinson.

Ethics declarations

Competing interests

C.V.R. is a consultant to Omass Technologies Ltd, a spinout company from the Department of Chemistry at the University of Oxford.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehmood, S., Marcoux, J., Gault, J. et al. Mass spectrometry captures off-target drug binding and provides mechanistic insights into the human metalloprotease ZMPSTE24. Nature Chem 8, 1152–1158 (2016). https://doi.org/10.1038/nchem.2591

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2591

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing