Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Translational, rotational and vibrational relaxation dynamics of a solute molecule in a non-interacting solvent

Abstract

Spectroscopically observing the translational and rotational motion of solute molecules in liquid solutions is typically impeded by their interactions with the solvent, which conceal spectral detail through linewidth broadening. Here we show that unique insights into solute dynamics can be made with perfluorinated solvents, which interact weakly with solutes and provide a simplified liquid environment that helps to bridge the gap in our understanding of gas- and liquid-phase dynamics. Specifically, we show that in such solvents, the translational and rotational cooling of an energetic CN radical can be observed directly using ultrafast transient absorption spectroscopy. We observe that translational-energy dissipation within these liquids can be modelled through a series of classic collisions, whereas classically simulated rotational-energy dissipation is shown to be distinctly faster than experimentally measured. We also observe the onset of rotational hindering from nearby solvent molecules, which arises as the average rotational energy of the solute falls below the effective barrier to rotation induced by the solvent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transient electronic absorption spectra that result from gas-phase BrCN photolysis at 220 nm.
Figure 2: Transient electronic absorption spectra that result from solution-phase BrCN photolysis at 220 nm.
Figure 3: Interpretation of transient spectra from Fig. 2.
Figure 4: Kinetic traces of translational- and rotational-energy relaxation.

Similar content being viewed by others

References

  1. Demtröder, W. Laser Spectroscopy 4th edn (Springer, 2008).

    Google Scholar 

  2. Leach, C. L. et al. Partial liquid ventilation with perflubron in premature infants with severe respiratory distress syndrome. New Engl. J. Med. 335, 761–767 (1996).

    Article  CAS  Google Scholar 

  3. Riess, J. G. Understanding the fundamentals of perfluorocarbons and perfluorocarbon emulsions relevant to in vivo oxygen delivery. Artif. Cell Blood Substit. Immobil. Biotechnol. 33, 47–63 (2005).

    Article  CAS  Google Scholar 

  4. Myers, A. B. & Li, B. L. Resonance Raman quantum yields for CS2 in solution—dynamics of solvent-induced spectral broadening. J. Chem. Phys. 92, 3310–3322 (1990).

    Article  CAS  Google Scholar 

  5. Fisher, W. H. et al. Photodissociation of BrCN and ICN in the A continuum—vibrational and rotational distributions of CN(X 2Σ+). Chem. Phys. 89, 457–471 (1984).

    Article  CAS  Google Scholar 

  6. Huang, C. S., Li, W., Silva, R. & Suits, A. G. DC slice ion imaging of the ultraviolet photodissociation of BrCN. Chem. Phys. Lett. 426, 242–247 (2006).

    Article  CAS  Google Scholar 

  7. Halpern, J. B. & Jackson, W. M. Partitioning of excess energy in the photolysis of cyanogen chloride and cyanogen bromide at 193 nm. J. Phys. Chem. 86, 3528–3533 (1982).

    Article  CAS  Google Scholar 

  8. Nadler, I., Reisler, H. & Wittig, C. Energy disposal in the laser photodissociation of ICN and BrCN at 300 K and in a free jet expansion. Chem. Phys. Lett. 103, 451–457 (1984).

    Article  CAS  Google Scholar 

  9. Dantus, M., Rosker, M. J. & Zewail, A. H. Femtosecond real-time probing of reactions. II. The dissociation reaction of ICN. J. Chem. Phys. 89, 6128–6140 (1988).

    Article  CAS  Google Scholar 

  10. Dantus, M., Bowman, R. M., Baskin, J. S. & Zewail, A. H. Femtosecond real-time alignment in chemical reactions. Chem. Phys. Lett. 159, 406–412 (1989).

    Article  CAS  Google Scholar 

  11. Benjamin, I. & Wilson, K. R. Proposed experimental probes of chemical reaction molecular dynamics in solution: ICN photodissociation. J. Chem. Phys. 90, 4176–4197 (1989).

    Article  CAS  Google Scholar 

  12. Wan, C. Z., Gupta, M. & Zewail, A. H. Femtochemistry of ICN in liquids: dynamics of dissociation, recombination and abstraction. Chem. Phys. Lett. 256, 279–287 (1996).

    Article  CAS  Google Scholar 

  13. Moskun, A. C., Jailaubekov, A. E., Bradforth, S. E., Tao, G. H. & Stratt, R. M. Rotational coherence and a sudden breakdown in linear response seen in room-temperature liquids. Science 311, 1907–1911 (2006).

    Article  CAS  Google Scholar 

  14. Moskun, A. C. & Bradforth, S. E. Photodissociation of ICN in polar solvents: evidence for long lived rotational excitation in room temperature liquids. J. Chem. Phys. 119, 4500–4515 (2003).

    Article  CAS  Google Scholar 

  15. Rivera, C. A., Winter, N., Harper, R. V., Benjamin, I. & Bradforth, S. E. The dynamical role of solvent on the ICN photodissociation reaction: connecting experimental observables directly with molecular dynamics simulations. Phys. Chem. Chem. Phys. 13, 8269–8283 (2011).

    Article  CAS  Google Scholar 

  16. Winter, N., Chorny, I., Vieceli, J. & Benjamin, I. Molecular dynamics study of the photodissociation and photoisomerization of ICN in water. J. Chem. Phys. 119, 2127–2143 (2003).

    Article  CAS  Google Scholar 

  17. Benjamin, I. Photodissociation of ICN in liquid chloroform—molecular-dynamics of ground and excited-state recombination, cage escape, and hydrogen abstraction reaction. J. Chem. Phys. 103, 2459–2471 (1995).

    Article  CAS  Google Scholar 

  18. Johnson, M. L. & Benjamin, I. Photodissociation of ICN at the water/chloroform interface. J. Phys. Chem. A 113, 7403–7411 (2009).

    Article  CAS  Google Scholar 

  19. Vieceli, J., Chorny, I. & Benjamin, I. Photodissociation of ICN at the liquid/vapor interface of chloroform. J. Chem. Phys. 115, 4819–4828 (2001).

    Article  CAS  Google Scholar 

  20. Winter, N. & Benjamin, I. Photodissociation of ICN at the liquid/vapor interface of water. J. Chem. Phys. 121, 2253–2263 (2004).

    Article  CAS  Google Scholar 

  21. Chen, S. Y. & Takeo, M. Broadening and shift of spectral lines due to the presence of foreign gases. Rev. Mod. Phys. 29, 20–73 (1957).

    Article  CAS  Google Scholar 

  22. Bambini, A., Berman, P. R., Buffa, R., Robinson, E. J. & Matera, M. Laser-induced collisional energy-transfer. Phys. Rep. 238, 245–339 (1994).

    Article  CAS  Google Scholar 

  23. Talin, B., Galatry, L. & Klein, L. Relaxation processes and spectra in liquids and dense gases. J. Chem. Phys. 66, 2789–2800 (1977).

    Article  CAS  Google Scholar 

  24. Robert, D. & Galatry, L. Calculation of infrared band shapes in liquid solutions of diatomic polar molecules in nonpolar solvents. Chem. Phys. Lett. 1, 399–403 (1967).

    Article  CAS  Google Scholar 

  25. Padilla, A., Perez, J., Herrebout, W. A., Van der Veken, B. J. & Bulanin, M. O. A simulation study of the vibration-rotational spectra of HCl diluted in Ar: rotational dynamics and the origin of the Q-branch. J. Mol. Struct. 976, 42–48 (2010).

    Article  CAS  Google Scholar 

  26. Thoma, A., Schallmoser, G., Smith, A. M., Wurfel, B. E. & Bondybey, V. E. Visible absorption and infrared-emission of CN–Xe in an argon matrix. J. Chem. Phys. 100, 5387–5389 (1994).

    Article  CAS  Google Scholar 

  27. Jorgensen, W. L. & Tirado-Rives, J. The OPLS potential functions for proteins—energy minimizations for crystals of cyclic-peptides and crambin. J. Am. Chem. Soc. 110, 1657–1666 (1988).

    Article  CAS  Google Scholar 

  28. Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    Article  CAS  Google Scholar 

  29. Watkins, E. K. & Jorgensen, W. L. Perfluoroalkanes: conformational analysis and liquid-state properties from ab initio and Monte Carlo calculations. J. Phys. Chem. A 105, 4118–4125 (2001).

    Article  CAS  Google Scholar 

  30. Western, C. M. PGOPHER: a program for simulating rotational, vibrational and electronic spectra. J. Quant. Spectrosc. Radiat. Transfer http://dx.doi.org/10.1016/j.jqsrt.2016.04.010 (2016).

Download references

Acknowledgements

We thank the European Research Council for the award of Advanced Grant 290966 CAPRI. M.P.G. is supported by a Marie Curie International Incoming Fellowship (PIIF-GA-2012-326988).

Author information

Authors and Affiliations

Authors

Contributions

M.P.G., A.J.O.E. and M.N.R.A. conceived the study. M.P.G., P.M.C. and R.S.M. planned and performed the liquid-phase transient experiments. H.J.B.M. planned and performed the transient gas-phase experiments. M.P.G. and P.M.C. analysed the data and conceived the theoretical models. B.H. performed the MD simulations. M.P.G., A.J.O.E. and M.N.R.A. wrote the paper with input from all the authors.

Corresponding author

Correspondence to Michael P. Grubb.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 961 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grubb, M., Coulter, P., Marroux, H. et al. Translational, rotational and vibrational relaxation dynamics of a solute molecule in a non-interacting solvent. Nature Chem 8, 1042–1046 (2016). https://doi.org/10.1038/nchem.2570

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2570

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing