Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A chemically powered unidirectional rotary molecular motor based on a palladium redox cycle

Abstract

The conversion of chemical energy to drive directional motion at the molecular level allows biological systems, ranging from subcellular components to whole organisms, to perform a myriad of dynamic functions and respond to changes in the environment. Directional movement has been demonstrated in artificial molecular systems, but the fundamental motif of unidirectional rotary motion along a single-bond rotary axle induced by metal-catalysed transformation of chemical fuels has not been realized, and the challenge is to couple the metal-centred redox processes to stepwise changes in conformation to arrive at a full unidirectional rotary cycle. Here, we present the design of an organopalladium-based motor and the experimental demonstration of a 360° unidirectional rotary cycle using simple chemical fuels. Exploiting fundamental reactivity principles in organometallic chemistry enables control of directional rotation and offers the potential of harnessing the wealth of opportunities offered by transition-metal-based catalytic conversions to drive motion and dynamic functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concept and design of a unidirectional rotary molecular motor.
Figure 2: Palladium-mediated 360° unidirectional rotation of biaryl 1.
Figure 3: Unidirectional 180° rotation of (S,M)-1 into (S,P)-1.
Figure 4: Unidirectional 180° rotation of (S,P)-1 into (S,M)-1.
Figure 5: Chemical structures and reaction scheme for an integrated cycle based on switching palladium(II) and palladium(0) redox states for unidirectional 360° rotation of (S,M)-1 into (S,P)-1 into (S,M)-1.

Similar content being viewed by others

References

  1. Champin, B., Mobian, P. & Sauvage, J.-P. Transition metal complexes as molecular machine prototypes. Chem. Soc. Rev. 36, 358–366 (2007).

    Article  CAS  Google Scholar 

  2. Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2012).

    Article  CAS  Google Scholar 

  3. Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2006).

    Article  Google Scholar 

  4. Browne, W. R. & Feringa, B. L. Making molecular machines work. Nature Nanotech. 1, 25–35 (2006).

    Article  CAS  Google Scholar 

  5. Kinbara, K. & Aida, T. Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem. Rev. 105, 1377–1400 (2005).

    Article  CAS  Google Scholar 

  6. Balzani, V., Credi, A. & Venturi, M. Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld (Wiley, 2008).

    Book  Google Scholar 

  7. Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

    Article  CAS  Google Scholar 

  8. Koumura, N., Geertsema, E. M., van Gelder, M. B., Meetsma, A. & Feringa, B. L. Second generation light-driven molecular motors. Unidirectional rotation controlled by a single stereogenic centre with near-perfect photoequilibria and acceleration of the speed of rotation by structural modification. J. Am. Chem. Soc. 124, 5037–5051 (2002).

    Article  CAS  Google Scholar 

  9. Leigh, D. A., Wong, J. K. Y., Dehez, F. & Zerbetto, F. Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 424, 174–179 (2003).

    Article  CAS  Google Scholar 

  10. Hernández, J. V., Kay, E. R. & Leigh, D. A. A reversible synthetic rotary molecular motor. Science 306, 1532–1537 (2004).

    Article  Google Scholar 

  11. Bissell, R. A., Córdova, E., Kaifer, A. E. & Stoddart, J. F. A chemically and electronically switchable molecular shuttle. Nature 369, 133–137 (1994).

    Article  CAS  Google Scholar 

  12. Ragazzon, G., Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. Nature Nanotech. 10, 70–75 (2015).

    Article  CAS  Google Scholar 

  13. Von Delius, M., Geertsema, E. M. & Leigh, D. A. A synthetic small molecule that can walk down a track. Nature Chem. 2, 96–101 (2010).

    Article  CAS  Google Scholar 

  14. Beves, J. E. et al. Toward metal complexes that can directionally walk along tracks: controlled stepping of a molecular biped with a palladium(II) foot. J. Am. Chem. Soc. 136, 2094–2100 (2014).

    Article  CAS  Google Scholar 

  15. Kelly, T. R., De Silva, H. & Silva, R. A. Unidirectional rotary motion in a molecular system. Nature 401, 150–152 (1999).

    Article  CAS  Google Scholar 

  16. Fletcher, S. P., Dumur, F., Pollard, M. M. & Feringa, B. L. A reversible unidirectional molecular rotary motor driven by chemical energy. Science 310, 80–82 (2005).

    Article  CAS  Google Scholar 

  17. Bringmann, G. & Hartung, T. First atropenantioselective ring opening of an achiral lactone-bridged biaryl with chiral borane-derived hydride-transfer reagents. Angew. Chem. Int. Ed. Engl. 31, 761–762 (1992).

    Article  Google Scholar 

  18. Bringmann, G. et al. Atropselective synthesis of axially chiral biaryl compounds. Angew. Chem. Int. Ed. 44, 5384–5427 (2005).

    Article  CAS  Google Scholar 

  19. Kakiuchi, F., Le Gendre, P., Yamada, A., Ohtaki, H. & Murai, S. Atropselective alkylation of biaryl compounds by means of transition metal-catalyzed C–H/olefin coupling. Tetrahedron Asymmetr. 11, 2647–2651 (2000).

    Article  CAS  Google Scholar 

  20. Ros, A. et al. Dynamic kinetic cross-coupling strategy for the asymmetric synthesis of axially chiral heterobiaryls. J. Am. Chem. Soc. 135, 15730–15733 (2013).

    Article  CAS  Google Scholar 

  21. Bhat, V., Wang, S., Stoltz, B. M. & Virgil, S. C. Asymmetric synthesis of QUINAP via dynamic kinetic resolution. J. Am. Chem. Soc. 135, 16829–16832 (2013).

    Article  CAS  Google Scholar 

  22. Hazra, C. K., Dherbassy, Q., Wencel-Delord, J. & Colobert, F. Synthesis of axially chiral biaryls through sulfoxide-directed asymmetric mild C–H activation and dynamic kinetic resolution. Angew. Chem. Int. Ed. 53, 13871–13875 (2014).

    Article  CAS  Google Scholar 

  23. Leroux, F. R., Berthelot, A., Bonnafoux, L., Panossian, A. & Colobert, F. Transition-metal-free atropo-selective synthesis of biaryl compounds based on arynes. Chem. Eur. J. 18, 14232–14236 (2012).

    Article  CAS  Google Scholar 

  24. Trost, B. M. & Rao, M. Development of chiral sulfoxide ligands for asymmetric catalysis. Angew. Chem. Int. Ed. 54, 5026–5043 (2015).

    Article  CAS  Google Scholar 

  25. Clayden, J., Mitjans, D. & Youssef, L. H. Lithium–sulfoxide–lithium exchange for the asymmetric synthesis of atropisomers under thermodynamic control. J. Am. Chem. Soc. 124, 5266–5267 (2002).

    Article  CAS  Google Scholar 

  26. Clayden, J., Fletcher, S. P., Rowbottom, S. J. M. & Helliwell, M. Conformational preferences of a polar biaryl: a phase- and enantiomeric purity-dependent molecular hinge. Org. Lett. 11, 2313–2316 (2009).

    Article  CAS  Google Scholar 

  27. Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010).

    Article  CAS  Google Scholar 

  28. Zalesskiy, S. S. & Ananikov, V. P. Pd2(dba)3 as a precursor of soluble metal complexes and nanoparticles: determination of palladium active species for catalysis and synthesis. Organometallics 31, 2302–2309 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the European Research Council (Advanced Investigator Grant no. 227897 to B.L.F.), The Netherlands Organization for Scientific Research (NWO-CW), funding from the Ministry of Education and Science (Gravitation programme 024.001.035) and The Royal Netherlands Academy of Arts and Sciences (KNAW).

Author information

Authors and Affiliations

Authors

Contributions

B.S.L.C. and B.L.F. conceived the project. B.S.L.C. performed the experimental work. J.C.M.K. performed the computational chemistry. E.O. solved the crystal structures. B.S.L.C. and B.L.F. wrote the manuscript. All authors read and commented on the manuscript.

Corresponding author

Correspondence to Ben L. Feringa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5787 kb)

Supplementary information

Crystallographic data for compound (+-)-Pd[(R,M)-3]BrPCy3 (CIF 1871 kb)

Supplementary information

Crystallographic data for compound (S,M)-1 (CIF 843 kb)

Supplementary information

Crystallographic data for compound (S,P)-1 (CIF 1602 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collins, B., Kistemaker, J., Otten, E. et al. A chemically powered unidirectional rotary molecular motor based on a palladium redox cycle. Nature Chem 8, 860–866 (2016). https://doi.org/10.1038/nchem.2543

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2543

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing