Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials

Abstract

Lithium-ion batteries are now reaching the energy density limits set by their electrode materials, requiring new paradigms for Li+ and electron hosting in solid-state electrodes. Reversible oxygen redox in the solid state in particular has the potential to enable high energy density as it can deliver excess capacity beyond the theoretical transition-metal redox-capacity at a high voltage. Nevertheless, the structural and chemical origin of the process is not understood, preventing the rational design of better cathode materials. Here, we demonstrate how very specific local Li-excess environments around oxygen atoms necessarily lead to labile oxygen electrons that can be more easily extracted and participate in the practical capacity of cathodes. The identification of the local structural components that create oxygen redox sets a new direction for the design of high-energy-density cathode materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of local atomic environments on the electronic states of O ions in cation-mixed layered LiNiO2.
Figure 2: Effect of Li–O–Li configurations on the electronic states of O ions in Li2MnO3.
Figure 3: Illustrations of preferred oxygen oxidation along the Li–O–Li configuration in various Li-excess materials.
Figure 4: Structural and chemical origin of the preferred oxygen oxidation along the Li–O–Li configuration.

Similar content being viewed by others

References

  1. Goodenough, J. B. & Park, K.-S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    Article  CAS  Google Scholar 

  2. Lee, J. et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519–522 (2014).

    Article  CAS  Google Scholar 

  3. Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nature Mater. 12, 827–835 (2013).

    Article  CAS  Google Scholar 

  4. Gallagher, K. G. et al. Quantifying the promise of lithium-air batteries for electric vehicles. Energy Environ. Sci. 7, 1555–1563 (2014).

    Article  CAS  Google Scholar 

  5. Kang, B. & Ceder, G. Battery materials for ultrafast charging and discharging. Nature 458, 190–193 (2009).

    Article  CAS  Google Scholar 

  6. Kang, K., Meng, Y. S., Breger, J., Grey, C. P. & Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977–980 (2006).

    Article  CAS  Google Scholar 

  7. Mizushima, K., Jones, P. C., Wiseman, P. J. & Goodenough, J. B. LixCoO2 (0 ≤ x ≤ −1): a new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783–789 (1980).

    Article  CAS  Google Scholar 

  8. Ohzuku, T., Ueda, A., Nagayama, M., Iwakoshi, Y. & Komori, H. Comparative study of LiCoO2, LiNi1/2Co1/2O2 and LiNiO2 for 4 volt secondary lithium cells. Electrochim. Acta 38, 1159–1167 (1993).

    Article  CAS  Google Scholar 

  9. Lu, Z., MacNeil, D. D. & Dahn, J. R. Layered Li[NixCo1−2xMnx]O2 cathode materials for lithium-ion batteries. Electrochem. Solid-State Lett. 4, A200–A203 (2001).

    Article  CAS  Google Scholar 

  10. Aydinol, M. K., Kohan, A. F., Ceder, G., Cho, K. & Joannopoulos, J. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys. Rev. B 56, 1354 (1997).

    Article  CAS  Google Scholar 

  11. Ceder, G. et al. Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature 392, 694–696 (1998).

    Article  CAS  Google Scholar 

  12. Yoon, W.-S. et al. Oxygen contribution on Li-ion intercalation–deintercalation in LiCoO2 investigated by O K-edge and Co L-edge X-ray absorption spectroscopy. J. Phys. Chem. B 106, 2526–2532 (2002).

    Article  CAS  Google Scholar 

  13. Yoon, W.-S. et al. Investigation of the charge compensation mechanism on the electrochemically Li-ion deintercalated Li1–xCo1/3Ni1/3Mn1/3O2 electrode system by combination of soft and hard X-ray absorption spectroscopy. J. Am. Chem. Soc. 127, 17479–17487 (2005).

    Article  CAS  Google Scholar 

  14. Graetz, J. et al. Electronic structure of chemically-delithiated LiCoO2 studied by electron energy-loss spectrometry. J. Phys. Chem. B 106, 1286–1289 (2002).

    Article  CAS  Google Scholar 

  15. Dahéron, L. et al. Electron transfer mechanisms upon lithium deintercalation from LiCoO2 to CoO2 investigated by XPS. Chem. Mater. 20, 583–590 (2008).

    Article  Google Scholar 

  16. Yoon, W.-S. et al. Combined NMR and XAS study on local environments and electronic structures of electrochemically Li-ion deintercalated Li1−xCo1/3Ni1/3 Mn1/3O2 electrode system. Electrochem. Solid-State Lett. 7, A53–A55 (2004).

    Article  CAS  Google Scholar 

  17. Koga, H. et al. Reversible oxygen participation to the redox processes revealed for Li1.20Mn0.54Co0.13Ni0.13O2 . J. Electrochem. Soc. 160, A786–A792 (2013).

    Article  CAS  Google Scholar 

  18. Yabuuchi, N. et al. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure. Proc. Natl Acad. Sci. USA 112, 7650–7655 (2015).

    Article  CAS  Google Scholar 

  19. Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).

    Article  CAS  Google Scholar 

  20. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  21. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  CAS  Google Scholar 

  22. Seo, D.-H., Urban, A. & Ceder, G. Calibrating transition metal energy levels and oxygen bands in first principles calculations: accurate prediction of redox potentials and charge transfer in lithium transition metal oxides. Phys. Rev. B 92, 115118 (2015).

    Article  Google Scholar 

  23. Ohzuku, T. & Makimura, Y. Layered lithium insertion material of LiCo1/3Ni1/3 Mn1/3O2 for lithium-ion batteries. Chem. Lett. 30, 642–643 (2001).

    Article  Google Scholar 

  24. Cho, Y. & Cho, J. Significant improvement of LiNi0.8Co0.15Al0.05O2 cathodes at 60 °C by SiO2 dry coating for Li-ion batteries. J. Electrochem. Soc. 157, A625–A629 (2010).

    Article  CAS  Google Scholar 

  25. Lu, Z. H., MacNeil, D. D. & Dahn, J. R. Layered cathode materials Li[NixLi(1/3–2x/3) Mn(2/3–x/3)]O2 for lithium-ion batteries. Electrochem. Solid-State Lett. 4, A191–A194 (2001).

    Article  CAS  Google Scholar 

  26. Xiao, R., Li, H. & Chen, L. Density functional investigation on Li2MnO3 . Chem. Mater. 24, 4242–4251 (2012).

    Article  CAS  Google Scholar 

  27. Lee, E. & Persson, K. A. Structural and chemical evolution of the layered Li-excess LixMnO3 as a function of Li content from first-principles calculations. Adv. Energy Mater. 4, 1400498 (2014).

    Article  Google Scholar 

  28. Sathiya, M. et al. High performance Li2Ru1–yMnyO3 (0.2 ≤ y ≤ 0.8) cathode materials for rechargeable lithium-ion batteries: their understanding. Chem. Mater. 25, 1121–1131 (2013).

    Article  CAS  Google Scholar 

  29. Wang, R. et al. A new disordered rock-salt Li-excess material with high capacity: Li1.25Nb0.25Mn0.5O2 . Electrochem. Commun. 60, 70–73 (2015).

    Article  CAS  Google Scholar 

  30. Lee, J. et al. A new class of high capacity cation-disordered oxides for rechargeable lithium batteries: Li-Ni-Ti-Mo oxides. Energy Environ. Sci. 8, 3255–3265 (2015).

    Article  CAS  Google Scholar 

  31. Petersburg, C. F., Li, Z., Chernova, N. A., Whittingham, M. S. & Alamgir, F. M. Oxygen and transition metal involvement in the charge compensation mechanism of LiNi1/3Mn1/3Co1/3O2 cathodes. J. Mater. Chem. 22, 19993–20000 (2012).

    Article  CAS  Google Scholar 

  32. Ballhausen, C. J. Ligand Field Theory (McGraw Hill, 1962).

    Google Scholar 

  33. Oishi, M. et al. Charge compensation mechanisms in Li1.16Ni0.15Co0.19Mn0.50O2 positive electrode material for Li-ion batteries analyzed by a combination of hard and soft X-ray absorption near edge structure. J. Power Sources 222, 45–51 (2013).

    Article  CAS  Google Scholar 

  34. Pauling, L. The Nature of the Chemical Bond Vol. 3 (Cornell Univ. Press, 1960).

    Google Scholar 

  35. Ashcroft, N. W. & Mermin, N. D. Solid State Physics 490–495 (Holt, Rinehart and Winston, 1976).

    Google Scholar 

  36. McCalla, E. et al. Understanding the roles of anionic redox and oxygen release during electrochemical cycling of lithium-rich layered Li4FeSbO6 . J. Am. Chem. Soc. 137, 4804–4814 (2015).

    Article  CAS  Google Scholar 

  37. Saubanere, M., McCalla, E., Tarascon, J. M. & Doublet, M. L. The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries. Energy Environ. Sci. 9, 984–991 (2016).

    Article  CAS  Google Scholar 

  38. Morrison, S. The Chemical Physics of Surfaces (Springer, 2012).

    Google Scholar 

  39. Zhang, L. et al. Synthesis and electrochemistry of cubic rocksalt Li–Ni–Ti–O compounds in the phase diagram of LiNiO2–LiTiO2–Li[Li1/3Ti2/3]O2 . J. Power Sources 185, 534–541 (2008).

    Article  CAS  Google Scholar 

  40. Shigemura, H., Tabuchi, M., Sakaebe, H., Kobayashi, H. & Kageyama, H. Lithium extraction and insertion behavior of nanocrystalline Li2TiO3–LiFeO2 solid solution with cubic rock salt structure. J. Electrochem. Soc. 150, A638–A644 (2003).

    Article  CAS  Google Scholar 

  41. Glazier, S. L., Li, J., Zhou, J., Bond, T. & Dahn, J. R. Characterization of disordered Li(1+x)Ti2xFe(1–3x)O2 as positive electrode materials in Li-ion batteries using percolation theory. Chem. Mater. 27, 7751–7756 (2015).

    Article  CAS  Google Scholar 

  42. Lias, S. Ionization energy search, NIST chemistry webbook, NIST standard reference database 69 (2005); http://webbook.nist.gov/chemistry/ie-ser.html

  43. Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Robert Bosch Corporation and Umicore Specialty Oxides and Chemicals, and by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy under contract no. DE-AC02–05CH11231, under the Batteries for Advanced Transportation Technologies (BATT) Program subcontract no. 7056411. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant no. ACI-1053575, and resources of the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under contract no. DE-C02-05CH11231. D.-H.S. acknowledges support from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2014R1A6A3A03056034). J.L. acknowledges financial support from a Samsung Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

G.C. planned the project, supervised all aspects of the research, contributed to the main theory and to writing the manuscript. D.-H.S. and J.L. conceived and designed project details. D.-H.S. performed DFT calculations. D.-H.S. and J.L. analysed the data. J.L. and D.-H.S. developed the main theory and authored the manuscript. D.-H.S and J.L. contributed equally to this work. A.U. and S.Y.K. performed preliminary DFT calculations. A.U. and R.M. assisted in data analysis and in writing the manuscript.

Corresponding author

Correspondence to Gerbrand Ceder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1546 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, DH., Lee, J., Urban, A. et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nature Chem 8, 692–697 (2016). https://doi.org/10.1038/nchem.2524

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2524

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing