Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reversible S-nitrosylation in an engineered azurin

Abstract

S-Nitrosothiols are known as reagents for NO storage and transportation and as regulators in many physiological processes. Although the S-nitrosylation catalysed by haem proteins is well known, no direct evidence of S-nitrosylation in copper proteins has been reported. Here, we report reversible insertion of NO into a copper–thiolate bond in an engineered copper centre in Pseudomonas aeruginosa azurin by rational design of the primary coordination sphere and tuning its reduction potential by deleting a hydrogen bond in the secondary coordination sphere. The results not only provide the first direct evidence of S-nitrosylation of Cu(II)-bound cysteine in metalloproteins, but also shed light on the reaction mechanism and structural features responsible for stabilizing the elusive Cu(I)–S(Cys)NO species. The fast, efficient and reversible S-nitrosylation reaction is used to demonstrate its ability to prevent NO inhibition of cytochrome bo3 oxidase activity by competing for NO binding with the native enzyme under physiologically relevant conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geometries of Cu(II) binding sites and Fourier transforms of EXAFS data with fitting.
Figure 2: UV–vis absorption, MS and EPR spectroscopic characterization of S-nitrosylation in engineered red copper protein.
Figure 3: Electrophilic and radical pathways for (Cys)S–NO bond formation and possible isomers of the Cu(I)/(Cys)S–NO product.
Figure 4: Effect of Cu(II)-M121H/H46E/F114PAz on NO inhibition of E. coli cytochrome bo3 oxidase.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Singel, D. J. & Stamler, J. S. Chemical physiology of blood flow regulation by red blood cells. Annu. Rev. Physiol. 67, 99–145 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Xu, L., Eu, J. P., Meissner, G. & Stamler, J. S. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279, 234–237 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Ozawa, K. et al. S-nitrosylation of β-arrestin regulates β-adrenergic receptor trafficking. Mol. Cell 31, 395–405 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Benhar, M., Forrester, M. T., Hess, D. T. & Stamler, J. S. Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science 320, 1050–1054 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Anand, P. & Stamler, J. S. Enzymatic mechanisms regulating protein S-nitrosylation: implications in health and disease. J. Mol. Med. 90, 233–244 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Smith, B. C. & Marletta, M. A. Mechanisms of S-nitrosothiol formation and selectivity in nitric oxide signaling. Curr. Opin. Chem. Biol. 16, 498–506 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bosworth, C. A., Toledo, J. C., Zmijewski, J. W., Li, Q. & Lancaster, J. R. Dinitrosyliron complexes and the mechanism(s) of cellular protein nitrosothiol formation from nitric oxide. Proc. Natl Acad. Sci. USA 106, 4671–4676 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gow, A. J., Luchsinger, B. P., Pawloski, J. R., Singel, D. J. & Stamler, J. S. The oxyhemoglobin reaction of nitric oxide. Proc. Natl Acad. Sci. USA 96, 9027–9032 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Herold, S. & Röck, G. Reactions of deoxy-, oxy-, and methemoglobin with nitrogen monoxide: mechanistic studies of the S-nitrosothiol formation under different mixing conditions. J. Biol. Chem. 278, 6623–6634 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Chan, N.-L., Kavanaugh, J. S., Rogers, P. H. & Arnone, A. Crystallographic analysis of the interaction of nitric oxide with quaternary-T human hemoglobin. Biochemistry 43, 118–132 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Weichsel, A. et al. Heme-assisted S-nitrosation of a proximal thiolate in a nitric oxide transport protein. Proc. Natl Acad. Sci. USA 102, 594–599 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schreiter, E. R., Rodríguez, M. M., Weichsel, A., Montfort, W. R. & Bonaventura, J. S-nitrosylation-induced conformational change in blackfin tuna myoglobin. J. Biol. Chem. 282, 19773–19780 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Romeo, A. A., Capobianco, J. A. & English, A. M. Superoxide dismutase targets NO from GSNO to Cysβ93 of oxyhemoglobin in concentrated but not dilute solutions of the protein. J. Am. Chem. Soc. 125, 14370–14378 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Mani, K., Cheng, F., Havsmark, B., David, S. & Fransson, L.-Å. Involvement of glycosylphosphatidylinositol-linked ceruloplasmin in the copper/zinc-nitric oxide-dependent degradation of glypican-1 heparan sulfate in rat C6 glioma cells. J. Biol. Chem. 279, 12918–12923 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Inoue, K. et al. Nitrosothiol formation catalyzed by ceruloplasmin: implication for cytoprotective mechanism in vivo. J. Biol. Chem. 274, 27069–27075 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Shiva, S. et al. Ceruloplasmin is a NO oxidase and nitrite synthase that determines endocrine NO homeostasis. Nature Chem. Biol. 2, 486–493 (2006).

    Article  CAS  Google Scholar 

  17. Stubauer, G., Giuffrè, A. & Sarti, P. Mechanism of S-nitrosothiol formation and degradation mediated by copper ions. J. Biol. Chem. 274, 28128–28133 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Bertini, I., Cavallaro, G. & McGreevy, K. S. Cellular copper management—a draft user's guide. Coord. Chem. Rev. 254, 506–524 (2010).

    Article  CAS  Google Scholar 

  19. Williams, D. L. H. The mechanism of nitric oxide formation from S-nitrosothiols (thionitrites). Chem. Commun. 1085–1091 (1996).

  20. Williams, D. L. H. The chemistry of S-nitrosothiols. Acc. Chem. Res. 32, 869–876 (1999).

    Article  CAS  Google Scholar 

  21. Wever, R., Van Leeuwen, F. X. R. & Van Gelder, B. F. The reaction of nitric oxide with ceruloplasmin. Biochim. Biophys. Acta 302, 236–239 (1973).

    Article  CAS  PubMed  Google Scholar 

  22. van Leeuwen, F. X. R., Wever, R., van Gelder, B. F., Avigliano, L. & Mondovi, B. The interaction of nitric oxide with ascorbate oxidase. Biochim. Biophys. Acta 403, 285–291 (1975).

    Article  CAS  Google Scholar 

  23. Gorren, A. C. F., de Boer, E. & Wever, R. The reaction of nitric oxide with copper proteins and the photodissociation of copper–NO complexes. Biochim. Biophys. Acta 916, 38–47 (1987).

    Article  CAS  PubMed  Google Scholar 

  24. Ehrenstein, D., Filiaci, M., Scharf, B., Engelhard, M. & Nienhaus, G. U. Ligand binding and protein dynamics in cupredoxins. Biochemistry 34, 12170–12177 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Hall, C. N. & Garthwaite, J. What is the real physiological NO concentration in vivo? Nitric Oxide 21, 92–103 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lancaster, K. M., DeBeer George, S., Yokoyama, K., Richards, J. H. & Gray, H. B. Type-zero copper proteins. Nature Chem. 1, 711–715 (2009).

    Article  CAS  Google Scholar 

  27. Lancaster, K. M. et al. Outer-sphere contributions to the electronic structure of type zero copper proteins. J. Am. Chem. Soc. 134, 8241–8253 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sieracki, N. A. et al. Copper–sulfenate complex from oxidation of a cavity mutant of Pseudomonas aeruginosa azurin. Proc. Natl Acad. Sci. USA 111, 924–929 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wilson, T. D., Yu, Y. & Lu, Y. Understanding copper-thiolate containing electron transfer centers by incorporation of unnatural amino acids and the CuA center into the type 1 copper protein azurin. Coord. Chem. Rev. 257, 260–276 (2013).

    Article  CAS  Google Scholar 

  30. Liu, J. et al. Redesigning the blue copper azurin into a redox-active mononuclear nonheme iron protein: preparation and study of Fe(II)-M121E azurin. J. Am. Chem. Soc. 136, 12337–12344 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Arciero, D. M., Pierce, B. S., Hendrich, M. P. & Hooper, A. B. Nitrosocyanin, a red cupredoxin-like protein from Nitrosomonas europaea. Biochemistry 41, 1703–1709 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Chain, P. et al. Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea. J. Bacteriol. 185, 2759–2773 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schmidt, I., Steenbakkers, P. J. M., op den Camp, H. J. M., Schmidt, K. & Jetten, M. S. M. Physiologic and proteomic evidence for a role of nitric oxide in biofilm formation by Nitrosomonas europaea and other ammonia oxidizers. J. Bacteriol. 186, 2781–2788 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Basumallick, L. et al. Spectroscopic and density functional studies of the red copper site in nitrosocyanin: role of the protein in determining active site geometric and electronic structure. J. Am. Chem. Soc. 127, 3531–3544 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Holm, L. & Rosenström, P. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, 545–549 (2010).

    Article  CAS  Google Scholar 

  36. Gray, H. B., Malmström, B. G. & Williams, R. J. Copper coordination in blue proteins. J. Biol. Inorg. Chem. 5, 551–559 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Lieberman, R. L., Arciero, D. M., Hooper, A. B. & Rosenzweig, A. C. Crystal structure of a novel red copper protein from Nitrosomonas europaea. Biochemistry 40, 5674–5681 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Messerschmidt, A. et al. Rack-induced metal binding vs. flexibility: Met121His azurin crystal structures at different pH. Proc. Natl Acad. Sci. USA 95, 3443–3448 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pascher, T., Karlsson, B. G., Nordling, M., Malmström, B. G. & Vänngård, T. Reduction potentials and their pH dependence in site-directed-mutant forms of azurin from Pseudomonas aeruginosa. Eur. J. Biochem. 212, 289–296 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Marshall, N. M. et al. Rationally tuning the reduction potential of a single cupredoxin beyond the natural range. Nature 462, 113–116 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hosseinzadeh, P. et al. Design of a single protein that spans the entire 2-V range of physiological redox potentials. Proc. Natl Acad. Sci. USA 113, 262–267 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Yanagisawa, S., Banfield, M. J. & Dennison, C. The role of hydrogen bonding at the active site of a cupredoxin: the Phe114Pro azurin variant. Biochemistry 45, 8812–8822 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Lu, Y. in Comprehensive Coordination Chemistry II (eds McCleverty, J. A. & Meyer, T. J.) 91–122 (Pergamon, 2003).

    Book  Google Scholar 

  44. Keefer, L. K., Nims, R. W., Davies, K. M. & Wink, D. A. in Methods in Enzymology Vol. 268 (ed. Lester, P.) 281–293 (Academic, 1996).

    Google Scholar 

  45. Solomon, E. I. Spectroscopic methods in bioinorganic chemistry: blue to green to red copper sites. Inorg. Chem. 45, 8012–8025 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Sarti, P. et al. Nitric oxide and cytochrome c oxidase: mechanisms of inhibition and NO degradation. Biochem. Biophys. Res. Commun. 274, 183–187 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Jourd'heuil, D., Laroux, F. S., Miles, A. M., Wink, D. A. & Grisham, M. B. Effect of superoxide dismutase on the stability of S-nitrosothiols. Arch. Biochem. Biophys. 361, 323–330 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, S., Çelebi-Ölçüm, N., Melzer, M. M., Houk, K. N. & Warren, T. H. Copper(I) nitrosyls from reaction of copper(II) thiolates with S-nitrosothiols: mechanism of NO release from RSNOs at Cu. J. Am. Chem. Soc. 135, 16746–16749 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Oh, B. K. & Meyerhoff, M. E. Spontaneous catalytic generation of nitric oxide from S-nitrosothiols at the surface of polymer films doped with lipophilic copper(II) complex. J. Am. Chem. Soc. 125, 9552–9553 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Toubin, C., Yeung, D. Y. H., English, A. M. & Peslherbe, G. H. Theoretical evidence that CuI complexation promotes degradation of S-nitrosothiols. J. Am. Chem. Soc. 124, 14816–14817 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Baciu, C., Cho, K.-B. & Gauld, J. W. Influence of Cu+ on the RS−NO bond dissociation energy of S-nitrosothiols. J. Phys. Chem. B 109, 1334–1336 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, P. G. et al. Nitric oxide donors: chemical activities and biological applications. Chem. Rev. 102, 1091–1134 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the US National Science Foundation (award no. CHE 14-13328 to Y.L.) and the National Institutes of Health (NIH award no. DK31450 to E.I.S. and award no. GM054803 to N.J.B.). The authors thank H. Matsumura and P. Moënne-Loccoz for performing an initial investigation using resonance Raman spectroscopy, Z. Ding for providing E. coli cytochrome bo3 oxidase and K. Hwang for discussions and revisions of the manuscript. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (contract no. DE-AC02-76SF00515). The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research and by the NIH and the National Institute of General Medical Sciences (NIGMS, including P41GM103393). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of NIGMS or NIH.

Author information

Authors and Affiliations

Authors

Contributions

S.T., J.L., N.M.M. and Y.L. conceived and designed the experiments. S.T., J.L., P.H., Y.Y. and H.R. performed the experiments. S.T., R.E.C., P.H., M.J.N., N.J.B., E.I.S. and Y.L. analysed the data. S.T., J.L., R.E.C., E.I.S. and Y.L. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Ninian J. Blackburn, Edward I. Solomon or Yi Lu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4044 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, S., Liu, J., Cowley, R. et al. Reversible S-nitrosylation in an engineered azurin. Nature Chem 8, 670–677 (2016). https://doi.org/10.1038/nchem.2489

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2489

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing