Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coordination chemistry at carbon

Abstract

Electron-rich allenes and heterocumulenes are commonly described by the regular notations of organic chemistry. Following on from published results and recent computational studies, we present here a host of crystallographic and reactivity data, as well as theoretical results, that indicate a highly non-canonical bonding situation in many members of this series. These must actually be interpreted as coordination compounds, in which carbon serves as a ‘central atom’ that interacts with its ‘ligand sphere’ via donor–acceptor bonds, even if these internal ligands themselves are carbon based. This captodative description is not limited to compounds that supposedly comprise a carbon(0) centre, a peculiar oxidation state that can be probed experimentally by geminal diauration. As the available data suggest that this unconventional interpretation of C–C and C–X bonds is more generally applicable than previously anticipated, it may well affect our understanding of organic chemistry in general.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conceivable carbon(0) compounds.
Figure 2: Complexation of phosphaketene ylide 3 and its isonitrile analogue 9.
Figure 3: Preparation and complexation behaviour of a conceptually novel zwitterionic carbene ligand.
Figure 4: Coordination chemistry at carbon.
Figure 5: The shape of the internal carbene ligand constitutes a critical determinant.
Figure 6: The rigour of the probe: metallation versus protonation.
Figure 7: Comparisons of the behaviour of ‘carbon complexes’ with that of known organometallic compounds.

Similar content being viewed by others

References

  1. Igau, A., Grützmacher, H., Baceiredo, A. & Bertrand, G. Analogous α,α′-bis-carbenoid triply bonded species: synthesis of a stable λ3-phosphinocarbene-λ5-phosphaacetylene. J. Am. Chem. Soc. 110, 6463–6466 (1988).

    Article  CAS  Google Scholar 

  2. Arduengo, A. J., Harlow, R. L. & Kline, M. A stable crystalline carbene. J. Am. Chem. Soc. 113, 361–363 (1991).

    Article  CAS  Google Scholar 

  3. Bertrand, G. Carbene Chemistry. From Fleeting Intermediates to Powerful Reagents (Dekker, 2002).

    Book  Google Scholar 

  4. Herrmann, W. A. N-Heterocyclic carbenes: a new concept in organometallic catalysis. Angew. Chem. Int. Ed. 41, 1290–1309 (2002).

    Article  CAS  Google Scholar 

  5. Hahn, F. E. & Jahnke, M. C. Heterocyclic carbenes: synthesis and coordination chemistry. Angew. Chem. Int. Ed. 47, 3122–3172 (2008).

    Article  CAS  Google Scholar 

  6. Tonner, R. & Frenking, G. Divalent carbon(0) chemistry, part 1: parent compounds. Chem. Eur. J. 14, 3260–3272 (2008).

    Article  CAS  Google Scholar 

  7. Tonner, R. & Frenking, G. Divalent carbon(0) chemistry, part 2: protonation and complexes with main group and transition metal Lewis acids. Chem. Eur. J. 14, 3273–3289 (2008).

    Article  CAS  Google Scholar 

  8. Kaska, W. C., Mitschell, D. K. & Reichelderfer, R. F. Transition metal complexes of hexaphenyl-carbodiphosphorane. J. Organomet. Chem. 47, 391–402 (1973).

    Article  CAS  Google Scholar 

  9. Schmidbaur, H. Phosphorus ylides in the coordination sphere of transition metals: an inventory. Angew. Chem. Int. Ed. Engl. 22, 907–927 (1983).

    Article  Google Scholar 

  10. Tonner, R., Öxler, F., Neumüller, B., Petz, W. & Frenking, G. Carbodiphosphoranes: the chemistry of divalent carbon(0). Angew. Chem. Int. Ed. 45, 8038–8042 (2006).

    Article  CAS  Google Scholar 

  11. Schmidbaur, H. & Gasser, O. The ambident ligand properties of bis(trimethylphosphoranylidene)-methane. Angew. Chem. Int. Ed. Engl. 15, 502–503 (1976).

    Article  Google Scholar 

  12. Vicente, J., Singhal, A. R. & Jones, P. G. New ylide-, alkynyl-, and mixed alkynyl/ylide-gold(I) complexes. Organometallics 21, 5887–5900 (2002).

    Article  CAS  Google Scholar 

  13. Marrot, S., Kato, T., Gornitzka, H. & Baceiredo, A. Cyclic carbodiphosphoranes: strongly nucleophilic σ-donor ligands. Angew. Chem. Int. Ed. 45, 2598–2601 (2006).

    Article  CAS  Google Scholar 

  14. Tonner, R. & Frenking, G. C(NHC)2: divalent carbon(0) compounds with N-heterocyclic carbene ligands—theoretical evidence for a class of molecules with promising chemical properties. Angew. Chem. Int. Ed. 46, 8695–8698 (2007).

    Article  CAS  Google Scholar 

  15. Viehe, H. G., Janousek, Z., Gompper, R. & Lach, D. Allenetetramine and dialkoxydiaminoallene. Angew. Chem. Int. Ed. Engl. 12, 566–567 (1973).

    Article  Google Scholar 

  16. Taylor, M. J., Surman, P. W. J. & Clark, G. R. Allyl, amidinium and cyclopropenyl cations from the reaction of primary and secondary amines with pentachlorocyclopropane. J. Chem. Soc. Chem. Commun. 2517–2518 (1994).

  17. Fürstner, A., Alcarazo, M., Goddard, R. & Lehmann, C. W. Coordination chemistry of ene-1,1-diamines and a prototype ‘carbodicarbene’. Angew. Chem. Int. Ed. 47, 3210–3214 (2008).

    Article  Google Scholar 

  18. Dyker, C. A., Lavallo, V., Donnadieu, B. & Bertrand G. Synthesis of an extremely bent acyclic allene (a ‘carbodicarbene’): a strong donor ligand. Angew. Chem. Int. Ed. 47, 3206–3209 (2008).

    Article  CAS  Google Scholar 

  19. Pascual, S. et al. Synthesis of a mixed phosphonium-sulfonium bisylide R3P = C = SR2 . Angew. Chem. Int. Ed. 46, 9078–9080 (2007).

    Article  CAS  Google Scholar 

  20. Lavallo, V., Dyker, C. A., Donnadieu, B. & Bertrand, G. Synthesis and ligand properties of stable five-membered-ring allenes containing only second-row elements. Angew. Chem. Int. Ed. 47, 5411–5414 (2008).

    Article  CAS  Google Scholar 

  21. Lavallo, V., Dyker, C. A., Donnadieu, B. & Bertrand, G. Are allenes with zwitterionic character still allenes? Of course! Angew. Chem. Int. Ed. 48, 1540–1542 (2009).

    Article  CAS  Google Scholar 

  22. Christl, M. & Engels, B. Stable five-membered-ring allenes with second-row elements only: not allenes, but zwitterions. Angew. Chem. Int. Ed. 48, 1538–1539 (2009).

    Article  CAS  Google Scholar 

  23. Kaufhold, O. & Hahn, F. E. Carbodicarbenes: divalent carbon(0) compounds. Angew. Chem. Int. Ed. 47, 4057–4061 (2008).

    Article  CAS  Google Scholar 

  24. Collmann, J. P., Hegedus, L. S., Norton, J. R. & Finke, R. G. Principles and Applications of Organotransition Metal Chemistry (University Science Books, 1987).

    Google Scholar 

  25. Asay, M. et al. Synthesis and ligand properties of a stable five-membered-ring vinylidenephosphorane. Angew. Chem. Int. Ed. 47, 7530–7533 (2008).

    Article  CAS  Google Scholar 

  26. Fürstner, A., Alcarazo, M., Krause, H. & Lehmann, C. W. Effective modulation of the donor properties of N-heterocyclic carbene ligands by ‘through-space’ communication within a planar chiral scaffold. J. Am. Chem. Soc. 129, 12676–12677 (2007).

    Article  Google Scholar 

  27. Tonner, R., Heydenrych, G. & Frenking, G. First and second proton affinities of carbon bases. ChemPhysChem 9, 1474–1481 (2008).

    Article  CAS  Google Scholar 

  28. Saalfrank, R. W. & Lurz, C.-J. in Methoden der Organischen Chemie (Houben-Weyl) 4th edn, Vol. E15/3 (eds Kropf, H. & Schaumann, E.) 3056–3051 (Thieme, 1993).

    Google Scholar 

  29. Braverman, S., Cherkinsky, M. & Birsa, M. L. in Science of Synthesis, Vol. 18 (ed. Knight, J. G.) 282–286 (Thieme, 2005).

    Google Scholar 

  30. Fürstner, A., Alcarazo, M., Radkowski, K. & Lehmann, C. W. Carbenes stabilized by ylides: pushing the limits. Angew. Chem. Int. Ed. 47, 8302–8306 (2008).

    Article  Google Scholar 

  31. Wang, Y. et al. A stable silicon(0) compound with a Si=Si double bond. Science 321, 1069–1071 (2008).

    Article  CAS  Google Scholar 

  32. Dyker, C. A. & Bertrand, G. Soluble allotropes of main-group elements. Science 321, 1050–1051 (2008).

    Article  CAS  Google Scholar 

  33. Hoffmann, R. Building bridges between inorganic and organic chemistry. Angew. Chem. Int. Ed. Engl. 21, 711–724 (1982).

    Article  Google Scholar 

  34. Johnson, B. F. G., Lewis, J., Raithby, P. R. & Sanders, A. Structure and bonding in Au2Os mixed-metal carbonyl clusters: the crystal and molecular structure of [Os(CO)4{AuPPh3}2]. J. Organomet. Chem. 260, C29–C32 (1984).

    Article  CAS  Google Scholar 

  35. Gladysz, J. A. & Tam, W. A one-flask preparation of analytically pure K2Fe(CO)4 . J. Org. Chem. 43, 2279–2280 (1978).

    Article  CAS  Google Scholar 

  36. Hill, N. J. & West, R. Recent developments in the chemistry of stable silylenes. J. Organomet. Chem. 689, 4165–4183 (2004).

    Article  CAS  Google Scholar 

  37. Fürstner, A., Krause, H. & Lehmann, C. W. Preparation, structure and catalytic properties of a binuclear Pd(0) complex with bridging silylene ligands. Chem. Commun. 2372–2372 (2001).

  38. Arduengo, A. J. et al. Photoelectron spectroscopy of a carbene/silylene/germylene series. J. Am. Chem. Soc. 116, 6641–6649 (1994).

    Article  CAS  Google Scholar 

  39. Tuononen, H. M., Roesler, R., Dutton, J. L. & Ragogna, P. J. Electronic structures of main-group carbene analogues. Inorg. Chem. 46, 10693–10706 (2007).

    Article  CAS  Google Scholar 

  40. Böhm, V. P. W., Gstöttmayr, C. W. K., Weskamp, T. & Herrmann, W. A. N-Heterocyclic carbene complexes of palladium(0): synthesis and application in the Suzuki cross-coupling reaction. J. Organomet. Chem. 595, 186–190 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

Generous financial support by the Max Planck Gesellschaft, the Spanish Ministerio de Educación y Ciencia (fellowship for M.A.) and the Fonds der Chemischen Industrie is gratefully acknowledged. We thank R. Goddard and J. Rust for solving the X-ray structures and H. Bruns for experimental support.

Author information

Authors and Affiliations

Authors

Contributions

A.F. and M.A. designed the research, M.A. performed the experimental work, C.W.L. was responsible for the crystal structures, A.A. and W.T. performed the computational studies; A.F. supervised the project and wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Alois Fürstner.

Supplementary information

Supplementary information

Supplementary information (PDF 575 kb)

Supplementary information

Crystallographic data for compound 10 (CIF 19 kb)

Supplementary information

Crystallographic data for compound 13 (CIF 22 kb)

Supplementary information

Crystallographic data for compound 16 (CIF 18 kb)

Supplementary information

Crystallographic data for compound 17 (CIF 19 kb)

Supplementary information

Crystallographic data for compound 20 (CIF 21 kb)

Supplementary information

Crystallographic data for compound 21 (CIF 31 kb)

Supplementary information

Crystallographic data for compound 23 (CIF 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alcarazo, M., Lehmann, C., Anoop, A. et al. Coordination chemistry at carbon. Nature Chem 1, 295–301 (2009). https://doi.org/10.1038/nchem.248

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.248

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing