Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dissociative electron attachment to CO2 produces molecular oxygen

Abstract

Until recently, it was widely regarded that only one reaction pathway led to the production of molecular oxygen in Earth's prebiotic primitive atmosphere: a three-body recombination reaction of two oxygen atoms and a third body that removes excess energy. However, an additional pathway has recently been observed that involves the photodissociation of CO2 on exposure to ultraviolet light. Here we demonstrate a further pathway to O2 production, again from CO2, but via dissociative electron attachment (DEA). Using anion-velocity image mapping, we provide experimental evidence for a channel of DEA to CO2 that produces O2(X3Σg) + C. This observed channel coexists in the same energy range as the competitive three-body dissociation of CO2 to give O + O + C. The abundance of low-energy electrons in interstellar space and the upper atmosphere of Earth suggests that the contributions of these pathways are significant and should be incorporated into atmospheric chemistry models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Possible dissociation pathways of CO2.
Figure 2: Time-sliced images of the C momentum distribution.
Figure 3: Weighted kinetic energy distributions of C.
Figure 4: Relative distributions of the molecular bending angle α.
Figure 5: Angular distributions of the C ions.

Similar content being viewed by others

References

  1. Holland, H. D. The oxygenation of the atmosphere and oceans. Phil. Trans. R. Soc. B 361, 903–915 (2006).

    Article  CAS  Google Scholar 

  2. Kasting, J. F., Pollack, J. B. & Crisp, D. Effects of high CO2 levels on surface-temperature and atmospheric oxidation state of the early Earth. J. Atmos. Chem. 1, 403–428 (1984).

    Article  CAS  Google Scholar 

  3. Kasting, J. F. & Walker, J. C. Limits on oxygen concentration in the prebiological atmosphere and the rate of abiotic fixation of nitrogen. J. Geophys. Res. 86, 1147–1158 (1981).

    Article  CAS  Google Scholar 

  4. Kasting, J. F., Liu, S. C. & Donahue, T. M. Oxygen levels in the prebiological atmosphere. J. Geophys. Res. 84, 3097–3107 (1979).

    Article  CAS  Google Scholar 

  5. Meriwether, J. W. Jr. A review of the photochemistry of selected nightglow emissions from the mesopause. J. Geophys. Res. 94, 14629–14646 (1989).

    Article  CAS  Google Scholar 

  6. Slanger, T. G. & Copeland, R. A. Energetic oxygen in the upper atmosphere and the laboratory. Chem. Rev. 103, 4731–4765 (2003).

    Article  CAS  Google Scholar 

  7. Pejakvović, D. A., Copeland, R. A., Cosby, P. C. & Slanger, T. G. Studies on the production of O2(a1Δg, ν = 0) and O2(b1Σg+, ν = 0) from collisional removal of O2(A3Σu+, ν = 6–10). J. Geophys. Res. 112, A10307 (2007).

    Article  Google Scholar 

  8. Lu, Z., Chang, Y. C., Yin, Q.-Z., Ng, C. Y. & Jackson, W. M. Evidence for direct molecular oxygen production in CO2 photodissociation. Science 346, 61–64 (2014).

    Article  CAS  Google Scholar 

  9. Suits, A. G. & Parker, D. H. Hot molecules—off the beaten path. Science 346, 30–31 (2014).

    Article  CAS  Google Scholar 

  10. Lee, J. S., Doering, J. P., Potemra, T. A. & Brace, L. H. Measurements of the ambient photoelectron spectrum from atmosphere explorer: I. AE-E measurements below 300 km during solar minimum conditions. Planet. Space Sci. 28, 947–971 (1980).

    Article  CAS  Google Scholar 

  11. Lee, J. S., Doering, J. P., Potemra, T. A. & Brace, L. H. Measurements of the ambient photoelectron spectrum from atmosphere explorer: II. AE-E measurements from 300 to 1000 km during solar minimum conditions. Planet. Space Sci. 28, 973–996 (1980).

    Google Scholar 

  12. Christophorou, L. G. Electron Molecule Interactions and their Applications (Academic Press, 1984).

    Google Scholar 

  13. Chantry, P. J. Dissociative attachment in carbon dioxide. J. Chem. Phys. 57, 3180–3186 (1972).

    Article  CAS  Google Scholar 

  14. McCurdy, C. W., Isaacs, W. A., Meyer, H.-D. & Rescigno, T. N. Resonant vibrational excitation of CO2 by electron impact: nuclear dynamics on the coupled components of the 2Πu resonance. Phys. Rev. A 67, 042708 (2003).

    Article  Google Scholar 

  15. Claydon, C. R., Segal, G. A. & Taylor, H. S. Theoretical interpretation of the electron scattering spectrum of CO2 . J. Chem. Phys. 52, 3387–3398 (1970).

    Article  CAS  Google Scholar 

  16. Spence, D. & Schulz, G. J. Cross sections for production of O2 and C by dissociative electron attachment in CO2: an observation of the Renner–Teller effect. J. Chem. Phys. 60, 216–220 (1974).

    Article  CAS  Google Scholar 

  17. Wu, B. et al. Renner–Teller effect on dissociative electron attachments to carbon dioxide. Phys. Rev. A 85, 052709 (2012).

    Article  Google Scholar 

  18. Moradmand, A. et al. Dissociative electron attachment to carbon dioxide via the 2Πu shape resonance. Phys. Rev. A 88, 032703 (2013).

    Article  Google Scholar 

  19. Wu, B., Xia, L., Li, H.-K., Zeng, X.-J. & Tian, S. X. Positive/negative ion velocity mapping apparatus for electron–molecule reactions. Rev. Sci. Instrum. 83, 013108 (2012).

    Article  Google Scholar 

  20. Wu, C. et al. Nonsequential and sequential fragmentation of CO23+ in intense laser fields. Phys. Rev. Lett. 110, 103601 (2013).

    Article  Google Scholar 

  21. Krupenie, P. The spectrum of molecular oxygen. J. Phys. Chem. Ref. Data 1, 423–534 (1972).

    Article  CAS  Google Scholar 

  22. Allan, M. et al. Production of vibrationally autodetaching O in low-energy electron impact on ozone. J. Phys. B 29, 3487–3495 (1996).

    Article  CAS  Google Scholar 

  23. O'Malley, T. F. & Taylor, H. S. Angular dependence of scattering products in electron–molecule resonant excitation and in dissociative attachment. Phys. Rev. 176, 207–221 (1968).

    Article  Google Scholar 

  24. Klar, H. & Morgner, H. Angular distribution of negative ions formed in dissociative attachment. J. Phys. B 12, 2369–2377 (1979).

    Article  CAS  Google Scholar 

  25. Chapman, S. Some phenomena of the upper atmosphere. Proc. R. Soc. Lond. A 132, 353–374 (1931).

    Article  CAS  Google Scholar 

  26. Xia, L. et al. Communication: state mixing by spin–orbit coupling in the anionic chloroiodine dissociations. J. Chem. Phys. 140, 041106 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Foundation of China (Grant No. 21273213), the Ministry of Science and Technology of China (Grant No. 2013CB834602) and Hefei Science Center of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

S.X.T. supervised the study. X.-D.W., X.-F.G. and C.-J.X. carried out the experimental measurements, and X.-D.W., X-.F.G. and S.X.T. performed the data analysis. X.-D.W. and S.X.T. wrote the paper. All the authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to Shan Xi Tian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 387 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XD., Gao, XF., Xuan, CJ. et al. Dissociative electron attachment to CO2 produces molecular oxygen. Nature Chem 8, 258–263 (2016). https://doi.org/10.1038/nchem.2427

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2427

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing