Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of a PEGylated protein reveals a highly porous double-helical assembly

Abstract

PEGylated proteins are a mainstay of the biopharmaceutical industry. Although the use of poly(ethylene glycol) (PEG) to increase particle size, stability and solubility is well-established, questions remain as to the structure of PEG–protein conjugates. Here we report the structural characterization of a model β-sheet protein (plastocyanin, 11.5 kDa) modified with a single PEG 5,000. An NMR spectroscopy study of the PEGylated conjugate indicated that the protein and PEG behaved as independent domains. A crystal structure revealed an extraordinary double-helical assembly of the conjugate, with the helices arranged orthogonally to yield a highly porous architecture. Electron density was not observed for the PEG chain, which indicates that it was disordered. The volume available per PEG chain in the crystal was within 10% of the calculated random coil volume. Together, these data support a minimal interaction between the protein and the synthetic polymer. Our work provides new possibilities for understanding this important class of protein–polymer hybrids and suggests a novel approach to engineering protein assemblies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relative sizes of protein and PEG.
Figure 2: NMR spectroscopic characterization of PEG–Pc.
Figure 3: Crystal structure of PEG–Pc.
Figure 4: Supramolecular assembly in the PEG–Pc crystal structure.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Smeenk, J. M. et al. Controlled assembly of macromolecular β-sheet fibrils. Angew. Chem. Int. Ed. 44, 1968–1971 (2005).

    Article  CAS  Google Scholar 

  2. Valtiner, M., Donaldson, S. H., Gebbie, M. A. & Israelachvili, J. N. Hydrophobic forces, electrostatic steering, and acid-base bridging between atomically smooth self-assembled monolayers and end-functionalized PEGolated lipid bilayers. J. Am. Chem. Soc. 134, 1746–1753 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Knop, K., Hoogenboom, R., Fischer, D. & Schubert, U. S. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. 49, 6288–6308 (2010).

    Article  CAS  Google Scholar 

  4. McPherson, A. Crystallization of proteins from polyethylene glycol. J. Biol. Chem. 251, 6300–6303 (1976).

    CAS  PubMed  Google Scholar 

  5. Kozer, N., Kuttner, Y. Y., Haran, G. & Schreiber, G. Protein–protein association in polymer solutions: from dilute to semidilute to concentrated. Biophys. J. 92, 2139–2149 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Zhou, H. X., Rivas, G. & Minton, A. P. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys. 37, 375–397 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Elcock, A. H. Models of macromolecular crowding effects and the need for quantitative comparisons with experiment. Curr. Opin. Struct. Biol. 20, 196–206 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ganguli, S. et al. Regulation of lysozyme activity based on thermotolerant protein/smart polymer complex formation. J. Am. Chem. Soc. 131, 6549–6553 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Muraoka, T. et al. A structured monodisperse PEG for the effective suppression of protein aggregation. Angew. Chem. Int. Ed. 52, 2430–2434 (2013).

    Article  CAS  Google Scholar 

  10. Abuchowski, A., McCoy, J. R., Palczuk, N. C., van Es, T. & Davis, F. F. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J. Biol. Chem. 252, 3582–3586 (1977).

    CAS  PubMed  Google Scholar 

  11. Harris, J. M. & Chess, R. B. Effect of pegylation on pharmaceuticals. Nature Rev. Drug. Discov. 2, 214–221 (2003).

    Article  CAS  Google Scholar 

  12. Pasut, G. & Veronese, F. M. State of the art in PEGylation: the great versatility achieved after forty years of research. J. Control. Release 161, 461–472 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Zeuzem, S. et al. Peginterferon alfa-2a in patients with chronic hepatitis C. N. Engl. J. Med. 343, 1666–1672 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Dhalluin, C. et al. Structural and biophysical characterization of the 40 kDa PEG-interferon-α2a and its individual positional isomers. Bioconjug. Chem. 16, 504–517 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Digilio, G. et al. NMR structure of two novel polyethylene glycol conjugates of the human growth hormone-releasing factor, hGRF(1–29)-NH2 . J. Am. Chem. Soc. 125, 3458–3470 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Bhat, R. & Timasheff, S. N. Steric exclusion is the principal source of the preferential hydration of proteins in the presence of polyethylene glycols. Protein Sci. 1, 1133–1143 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tardieu, A., Bonneté, F., Finet, S. & Vivarès, D. Understanding salt or PEG induced attractive interactions to crystallize biological macromolecules. Acta Crystallogr. D 58, 1549–1553 (2002).

    Article  PubMed  Google Scholar 

  18. Sheth, S. R. & Leckband, D. Measurements of attractive forces between proteins and end-grafted poly(ethylene glycol) chains. Proc. Natl Acad. Sci. USA 94, 8399–8404 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Furness, E. L., Ross, A., Davis, T. P. & King, G. C. A hydrophobic interaction site for lysozyme binding to polyethylene glycol and model contact lens polymers. Biomaterials 19, 1361–1369 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Crowley, P. B., Brett, K. & Muldoon, J. NMR spectroscopy reveals cytochrome c–poly(ethylene glycol) interactions. ChemBioChem 9, 685–688 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Lee, H., Venable, R. M., Mackerell, A. D. & Pastor, R. W. Molecular dynamics studies of polyethylene oxide and polyethylene glycol: hydrodynamic radius and shape anisotropy. Biophys. J. 95, 1590–1599 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee, H., de Vries, A. H., Marrink, S. J. & Pastor, R. W. A coarse-grained model for polyethylene oxide and polyethylene glycol: conformation and hydrodynamics. J. Phys. Chem. B 113, 13186–13194 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lu, Y. et al. Effect of PEGylation on the solution conformation of antibody fragments. J. Pharm. Sci. 97, 2062–2079 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Svergun, D. I. et al. Solution structure of poly(ethylene) glycol-conjugated hemoglobin revealed by small-angle X-ray scattering: implications for a new oxygen therapeutic. Biophys. J. 94, 173–181 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. He, L. et al. Analysis of monoPEGylated human galectin-2 by small-angle X-ray and neutron scattering: concentration dependence of PEG conformation in the conjugate. Biomacromolecules 11, 3504–3510 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Pai, S. S. et al. The conformation of the poly(ethylene glycol) chain in mono-PEGylated lysozyme and mono-PEGylated human growth hormone. Bioconjug. Chem. 22, 2317–2323 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Shu, J. Y., Lund, R. & Xu, T. Solution structural characterization of coiled-coil peptide–polymer side-conjugates. Biomacromolecules 13, 1945–1955 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Gokarn, Y. R., McLean, M. & Laue, T. M. Effect of PEGylation on protein hydrodynamics. Mol. Pharm. 9, 762–773 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Fee, C. J. & van Alstine, J. M. Prediction of the viscosity radius and the size exclusion chromatography behavior of PEGylated proteins. Bioconjug. Chem. 15, 1304–1313 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Fee, C. J. Size comparison between proteins PEGylated with branched and linear poly(ethylene glycol) molecules. Biotechnol. Bioeng. 98, 725–731 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Crowley, P., Ubbink, M. & Otting, G. ϕ angle restraints in protein backbones from dipole–dipole cross-correlation between 1HN-15N and 1HN -1Hα vectors. J. Am. Chem. Soc. 122, 2968–2969 (2000).

    Article  CAS  Google Scholar 

  32. Crowley, P. B. et al. Regulation of protein function: crystal packing interfaces and conformational dimerization. Biochemistry 47, 6583–6589 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Crowley, P. B., Matias, P. M., Khan, A. R., Roessle, M. & Svergun, D. I. Metal-mediated self-assembly of a β-sandwich protein. Chem. Eur. J. 15, 12672–12680 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, T. et al. Cross-conjugation of DNA, proteins and peptides via a pH switch. Chem. Sci. 4, 1889–1894 (2013).

    Article  CAS  Google Scholar 

  35. Koshiyama, T. et al. Modification of porous protein crystals in development of biohybrid materials. Bioconjug. Chem. 21, 264–269 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. de Gennes, P. G. Conformations of polymers attached to an interface. Macromolecules 13, 1069–1075 (1980).

    Article  CAS  Google Scholar 

  37. Israelachvili, J. N. Intermolecular and Surface Forces 3rd edn (Academic Press, 2011).

    Google Scholar 

  38. Hašek, J. Poly(ethylene glycol) interactions with proteins. Z. Kristallogr. Suppl. 23, 613–618 (2006).

    Article  Google Scholar 

  39. Lee, C. C. et al. Crowning proteins: modulating the protein surface properties using crown ethers. Angew. Chem. Int. Ed. 53, 13054–13058 (2014).

    Article  CAS  Google Scholar 

  40. Lai, Y. T. et al. Structure of a designed protein cage that self-assembles into a highly porous cube. Nature Chem. 6, 1065–1071 (2014).

    Article  CAS  Google Scholar 

  41. Marley, J., Lu, M. & Bracken, C. A method for efficient isotopic labeling of recombinant proteins. J. Biomol. NMR 20, 71–75 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Hermanson, G. T. Bioconjugate Techniques 3rd edn (Academic Press, 2013).

    Google Scholar 

  43. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    CAS  PubMed  Google Scholar 

  44. Vranken, W. F. et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687–696 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Collaborative Computational Project. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

    Article  Google Scholar 

  46. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  48. Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D 67, 355–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Headd, J. J. et al. Use of knowledge-based restraints in phenix.refine to improve macromolecular refinement at low resolution. Acta Crystallogr. D 68, 381–390 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Harpaz, Y., Gerstein, M. & Chothia, C. Volume changes on protein folding. Structure 2, 641–649 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by National University of Ireland Galway and Science Foundation Ireland grants 10/RFP/BIC2807 to P.B.C. and 12/IA/1255 to M. Caffrey (postdoctoral funding to L.V.). We acknowledge the Diamond Light Source (UK) for beam-time allocation and the staff of beam line I24 for assistance with the data collection. We thank M. Vignoles and G. Manning for mass spectrometry data. R. Pastor and H. Lee are acknowledged for helpful discussions and for providing a coarse-grained model of PEG 5,000.

Author information

Authors and Affiliations

Authors

Contributions

P.B.C. devised the research. G.C. performed the experiments. L.V. collected the synchrotron data and helped with data processing and analysis. G.C. and P.B.C. analysed the data. P.B.C. wrote the paper. All the authors commented on the manuscript.

Corresponding author

Correspondence to Peter B. Crowley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 804 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cattani, G., Vogeley, L. & Crowley, P. Structure of a PEGylated protein reveals a highly porous double-helical assembly. Nature Chem 7, 823–828 (2015). https://doi.org/10.1038/nchem.2342

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2342

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing