Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enzymatic hydroxylation of an unactivated methylene C–H bond guided by molecular dynamics simulations

Abstract

The hallmark of enzymes from secondary metabolic pathways is the pairing of powerful reactivity with exquisite site selectivity. The application of these biocatalytic tools in organic synthesis, however, remains under-utilized due to limitations in substrate scope and scalability. Here, we report how the reactivity of a monooxygenase (PikC) from the pikromycin pathway is modified through computationally guided protein and substrate engineering, and applied to the oxidation of unactivated methylene C–H bonds. Molecular dynamics and quantum mechanical calculations were used to develop a predictive model for substrate scope, site selectivity and stereoselectivity of PikC-mediated C–H oxidation. A suite of menthol derivatives was screened computationally and evaluated through in vitro reactions, where each substrate adhered to the predicted models for selectivity and conversion to product. This platform was also expanded beyond menthol-based substrates to the selective hydroxylation of a variety of substrate cores ranging from cyclic to fused bicyclic and bridged bicyclic compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selected oxidation products of (–)-menthol and calculated bond dissociation energies for the corresponding C–H bonds (in kcal mol−1).
Figure 2: Substrate anchoring mechanism employed by P450 PikC.
Figure 3: Substrate binding and tertiary structure of PikC variants observed in MD simulations.
Figure 4: Stereoselectivity in the C4–H abstraction catalysed by PikC.
Figure 5: Site-selective oxidation with PikCD50ND176QE246A-RhFRED.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Newhouse, T. & Baran, P. S. If C–H bonds could talk: selective C–H bond oxidation. Angew. Chem. Int. Ed. 50, 3362–3374 (2011).

    Article  CAS  Google Scholar 

  2. Gormisky, P. E. & White, M. C. Catalyst-controlled aliphatic C–H oxidations with a predictive model for site-selectivity. J. Am. Chem. Soc. 135, 14052–14055 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Chen, M. S. & White, M. C. Combined effects on selectivity in Fe-catalyzed methylene oxidation. Science 327, 566–571 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Chen, K., Eschenmoser, A. & Baran, P. S. Strain release in C–H bond activation. Angew. Chem. Int. Ed. 48, 9705–9708 (2009).

    Article  CAS  Google Scholar 

  5. Roiban, G. D., Agudo, R. & Reetz, M. T. Cytochrome P450 catalyzed oxidative hydroxylation of achiral organic compounds with simultaneous creation of two chirality centers in a single C–H activation step. Angew. Chem. Int. Ed. 53, 8659–8663 (2014).

    Article  CAS  Google Scholar 

  6. Kille, S., Zilly, F. E., Acevedo, J. P. & Reetz, M. T. Regio- and stereoselectivity of P450-catalysed hydroxylation of steroids controlled by laboratory evolution. Nature Chem. 3, 738–743 (2011).

    Article  CAS  Google Scholar 

  7. Zhang, K. D., Shafer, B. M., Demars, M. D., Stern, H. A. & Fasan, R. Controlled oxidation of remote sp3 C–H bonds in artemisinin via P450 catalysts with fine-tuned regio- and stereoselectivity. J. Am. Chem. Soc. 134, 18695–18704 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, K. D., El Damaty, S. & Fasan, R. P450 fingerprinting method for rapid discovery of terpene hydroxylating P450 catalysts with diversified regioselectivity. J. Am. Chem. Soc. 133, 3242–3245 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Lewis, J. C., Coelho, P. S. & Arnold, F. H. Enzymatic functionalization of carbon–hydrogen bonds. Chem. Soc. Rev. 40, 2003–2021 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Fasan, R. Tuning P450 enzymes as oxidation catalysts. ACS Catal. 2, 647–666 (2012).

    Article  CAS  Google Scholar 

  11. Agudo, R., Roiban, G. D. & Reetz, M. T. Achieving regio- and enantioselectivity of P450-catalyzed oxidative C–H activation of small functionalized molecules by structure-guided directed evolution. ChemBioChem 13, 1465–1473 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Acevedo-Rocha, C. G., Hoebenreich, S. & Reetz, M. T. in Methods in Molecular Biology 2nd edn, Vol. 1179 (eds Gillam, E. M. J., Copp, J. N. & Ackerley, D. F.) 103–128 (Humana Press, 2014).

    Google Scholar 

  13. Jung, S. T., Lauchli, R. & Arnold, F. H. Cytochrome P450: taming a wild type enzyme. Curr. Opin. Biotechnol. 22, 809–817 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang, J., Gabriele, B., Belvedere, S., Huang, Y. & Breslow, R. Catalytic oxidations of steroid substrates by artificial cytochrome P-450 enzymes. J. Org. Chem. 67, 5057–5067 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Breslow, R. et al. Remote oxidation of steroids by photolysis of attached benzophenone groups. J. Am. Chem. Soc. 95, 3251–3262 (1973).

    Article  CAS  PubMed  Google Scholar 

  16. Leow, D., Li, G., Mei, T. S. & Yu, J. Q. Activation of remote meta-C–H bonds assisted by an end-on template. Nature 486, 518–522 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tang, R. Y., Li, G. & Yu, J. Q. Conformation-induced remote meta-C–H activation of amines. Nature 507, 215–220 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Larsen, A. T., May, E. M. & Auclair, K. Predictable stereoselective and chemoselective hydroxylations and epoxidations with P450 3A4. J. Am. Chem. Soc. 133, 7853–7858 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Menard, A., Fabra, C., Huang, Y. & Auclair, K. Type II ligands as chemical auxiliaries to favor enzymatic transformations by P450 2E1. ChemBioChem 13, 2527–2536 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Polic, V. & Auclair, K. Controlling substrate specificity and product regio- and stereo-selectivities of P450 enzymes without mutagenesis. Bioorg. Med. Chem. 22, 5547–5554 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vermeulen, N. A., Chen, M. S. & White, M. C. The Fe(PDP)-catalyzed aliphatic C–H oxidation: a slow addition protocol. Tetrahedron 65, 3078–3084 (2009).

    Article  CAS  Google Scholar 

  22. Olivo, G., Lanzalunga, O., Mandolini, L. & Di Stefano, S. Substituent effects on the catalytic activity of bipyrrolidine-based iron complexes. J. Org. Chem. 78, 11508–11512 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Yazerski, V. A. et al. Making Fe(BPBP)-catalyzed C–H and C=C oxidations more affordable. Org. Biomol. Chem. 12, 2062–2070 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Lee, S. & Fuchs, P. L. An efficient C–H oxidation protocol for alpha-hydroxylation of cyclic steroidal ethers. Org. Lett. 6, 1437–1440 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Ottenbacher, R. V., Samsonenko, D. G., Talsi, E. P. & Bryliakov, K. P. Highly efficient, regioselective, and stereospecific oxidation of aliphatic C–H groups with H2O2, catalyzed by aminopyridine manganese complexes. Org. Lett. 14, 4310–4313 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Chow, Y. L., Hayasaka, T. & Tam, J. N. S. Photoreaction of nitroso compounds in solution. 13. Photo-oxidation of alkyl nitrites. Can. J. Chem. 48, 508–511 (1970).

    Article  CAS  Google Scholar 

  27. Petrovic, G., Saicic, R. N. & Cekovic, Z. Regioselective free radical phenylsulfenation of a non-activated delta-carbon atom by the photolysis of alkyl benzenesulfenate. Tetrahedron 59, 187–196 (2003).

    Article  CAS  Google Scholar 

  28. Miyazawa, M., Kumagae, S. & Kameoka, H. Biotransformation of (+)- and (–)-menthol by the larvae of common cutworm (Spodoptera litura). J. Agric. Food Chem. 47, 3938–3940 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Atta ur, R. et al. Fungal transformation of (1R,2S,5R)-(–)-menthol by Cephalosporium aphidicola. J. Nat. Prod. 61, 1340–1342 (1998).

    Article  Google Scholar 

  30. Xue, Y. Q., Zhao, L. S., Liu, H. W. & Sherman, D. H. A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: architecture of metabolic diversity. Proc. Natl Acad. Sci. USA 95, 12111–12116 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xue, Y. Q., Wilson, D., Zhao, L. S., Liu, H. W. & Sherman, D. H. Hydroxylation of macrolactones YC-17 and narbomycin is mediated by the PikC-encoded cytochrome P450 in Streptomyces venezuelae. Chem. Biol. 5, 661–667 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, Q. B. & Sherman, D. H. Isolation and structure determination of novamethymycin, a new bioactive metabolite of the methymycin biosynthetic pathway in Streptomyces venezuelae. J. Nat. Prod. 64, 1447–1450 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Sherman, D. H. et al. The structural basis for substrate anchoring, active site selectivity, and product formation by P450 PikC from Streptomyces venezuelae. J. Biol. Chem. 281, 26289–26297 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Li, S. Y., Ouellet, H., Sherman, D. H. & Podust, L. M. Analysis of transient and catalytic desosamine-binding pockets in cytochrome P-450 PikC from Streptomyces venezuelae. J. Biol. Chem. 284, 5723–5730 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, S. Y. et al. Selective oxidation of carbolide C–H bonds by an engineered macrolide P450 mono-oxygenase. Proc. Natl Acad. Sci. USA 106, 18463–18468 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Negretti, S. et al. Directing group-controlled regioselectivity in an enzymatic C–H bond oxygenation. J. Am. Chem. Soc. 136, 4901–4904 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jiménez-Osés, G. et al. The role of distant mutations and allosteric regulation on LovD active site dynamics. Nature Chem. Biol. 10, 431–436 (2014).

    Article  CAS  Google Scholar 

  38. Li, S. Y., Podust, L. M. & Sherman, D. H. Engineering and analysis of a self-sufficient biosynthetic cytochrome P450 PikC fused to the RhFRED reductase domain. J. Am. Chem. Soc. 129, 12940–12941 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wong, C-H. & Whitesides, G. M. Enzyme-catalyzed organic synthesis: NAD(P)H cofactor regeneration by using glucose-6-phosphate and glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides. J. Am. Chem. Soc. 103, 4890–4899 (1981).

    Article  CAS  Google Scholar 

  40. Frisch, M. J. et al. Gaussian 09 (Gaussian, 2009).

  41. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  42. Shaik, S. et al. P450 enzymes. Their structure, reactivity, and selectivity—modeled by QM/MM calculations. Chem. Rev. 110, 949–1017 (2009).

    Article  CAS  Google Scholar 

  43. Rydberg, P., Sigfridsson, E. & Ryde, U. On the role of the axial ligand in heme proteins: a theoretical study. J. Biol. Inorg. Chem. 9, 203–223 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Hay, P. J. & Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82, 270–283 (1985).

    Article  CAS  Google Scholar 

  45. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Zhao, Y. & Truhlar, D. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).

    Article  CAS  Google Scholar 

  47. Dolg, M., Wedig, U., Stoll, H. & Preuss, H. Energy-adjusted ab initio pseudopotentials for the first row transition elements. J. Chem. Phys. 86, 866–872 (1987).

    Article  CAS  Google Scholar 

  48. Gonzalez, C. & Schlegel, H. B. Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 94, 5523–5527 (1990).

    Article  CAS  Google Scholar 

  49. Gonzalez, C. & Schlegel, H. B. An improved algorithm for reaction path following. J. Chem. Phys. 90, 2154–2161 (1989).

    Article  CAS  Google Scholar 

  50. Gerenkamp, M. & Grimme, S. Spin-component scaled second-order Moller–Plesset perturbation theory for the calculation of molecular geometries and harmonic vibrational frequencies. Chem. Phys. Lett. 392, 229–235 (2004).

    Article  CAS  Google Scholar 

  51. Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989).

    Article  CAS  Google Scholar 

  52. Salomon-Ferrer, R., Götz, A. W., Poole, D., Le Grand, S. & Walker, R. C. Routine microsecond molecular dynamics simulations with AMBER on Gpus. 2. Explicit solvent particle mesh ewald. J. Chem. Theory Comput. 9, 3878–3888 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Case, D. A. et al. AMBER 12 (UCSF, 2012).

  54. Shahrokh, K., Orendt, A., Yost, G. S. & Cheatham, T. E. Quantum mechanically derived AMBER-compatible heme parameters for various states of the cytochrome P450 catalytic cycle. J. Comput. Chem. 33, 119–133 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Wang, J. M., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general Amber force field. J. Comput. Chem. 25, 1157–1174 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Bayly, C. I., Cieplak, P., Cornell, W. D. & Kollman, P. A. A Well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 97, 10269–10280 (1993).

    Article  CAS  Google Scholar 

  57. Besler, B. H., Merz, K. M. & Kollman, P. A. Atomic charges derived from semiempirical methods. J. Comput. Chem. 11, 431–439 (1990).

    Article  CAS  Google Scholar 

  58. Singh, U. C. & Kollman, P. A. An approach to computing electrostatic charges for molecules. J. Comput. Chem. 5, 129–145 (1984).

    Article  CAS  Google Scholar 

  59. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  CAS  Google Scholar 

  60. Wang, J. M., Cieplak, P. & Kollman, P. A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 21, 1049–1074 (2000).

    Article  CAS  Google Scholar 

  61. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N-log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation under the CCI Center for Selective C−H Functionalization (CHE-1205646) and the National Institutes of Health (NIH R01 grant GM078553 to D.H.S., J.M. and L.M.P. and grant GM075962 to K.N.H.). Calculations were performed using the Extreme Science and Engineering Discovery Environment (XSEDE), which is funded by the NSF (OCI-1053575), and the UCLA Institute of Digital Research and Education (IDRE). The authors also acknowledge the Life Sciences Research Foundation for a postdoctoral fellowship (to A.R.H.N.) and the University of Michigan Chemistry–Biology Interface (CBI) training programme (GM008597, to S.N.). J. Stachowski is thanked for discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.R.H.N. and G.J-O. contributed equally to this work. A.R.H.N., G.J-O., P.L., S.N., J.M., K.N.H. and D.H.S. conceived, designed and supervised the project. G.J-O., P.L., R.O.R., Y-F.Y., L.R.F. and Z.L. performed the computational experiments. A.R.H.N., S.N., W.Z. and M.M.G. synthesized substrates and characterized products. A.R.H.N. conducted the biochemical experiments. A.R.H.N., G.J-O., P.L., L.M.P., J.M., K.N.H. and D.H.S. wrote and edited the manuscript.

Corresponding authors

Correspondence to John Montgomery, K. N. Houk or David H. Sherman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 10898 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayan, A., Jiménez-Osés, G., Liu, P. et al. Enzymatic hydroxylation of an unactivated methylene C–H bond guided by molecular dynamics simulations. Nature Chem 7, 653–660 (2015). https://doi.org/10.1038/nchem.2285

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2285

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing