Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries

Subjects

Abstract

In the search for improved energy storage, rechargeable metal–oxygen batteries are very attractive owing to their reliance on molecular oxygen, which forms oxides on discharge that decompose reversibly on charge. Much focus has been directed at aprotic Li–O2 cells, but the aprotic Na–O2 system is of equal interest because of its better reversibility. We report here on the critical role and mechanism of phase-transfer catalysis in Na–O2 batteries. We find that it is solely responsible for the growth and dissolution of micrometre-sized cubic NaO2 crystals and for the reversible cell capacity. In the absence of phase-transfer catalysis, quasi-amorphous NaO2 films are formed and cells exhibit negligible capacity. Electrochemical investigations provide a measure of the transportation of superoxide from the carbon electrode to the electrolyte phase by the phase transfer catalyst. This leads to a new understanding of the mechanism of Na–O2 batteries that, significantly, extends to Li–O2 cells and explains their different behaviour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of the electrochemistry, XRD patterns and morphology of NaO2 formed by discharge in pure and water-added NaOTf salt electrolyte.
Figure 2: Oxygen evolution monitored by online mass spectrometry.
Figure 3: Schematic illustration of the mechanism of proton phase-transfer catalysis.
Figure 4: RRDE analysis of superoxide transport in the electrolyte in the absence or presence of water.
Figure 5: Electrochemical results for Na–O2 cells.

Similar content being viewed by others

References

  1. Abraham, K. M. & Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996).

    CAS  Google Scholar 

  2. Kraytsberg, A. & Ein-Eli, Y. J. Review on Li–air batteries—opportunities, limitations, and perspective. J. Power Sources 196, 886–893 (2011).

    Article  CAS  Google Scholar 

  3. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J. M. Li–O2 and Li–S batteries with high energy storage. Nature Chem. 11, 19–29 (2012).

    CAS  Google Scholar 

  4. Black, R., Adams, B. & Nazar, L. F. Non-aqueous and hybrid Li–O2 batteries. Adv. Energy Mater. 2, 801–815 (2012).

    Article  CAS  Google Scholar 

  5. McCloskey, B. D. et al. The twin problems of interfacial carbonate formation in non-aqueous Li–O2 batteries. J. Phys. Chem. Lett. 3, 997–1001 (2012).

    Article  CAS  Google Scholar 

  6. Thotiyl, M. M. O., Freunberger, S. A., Peng, Z. & Bruce, P. G. The carbon electrode in nonaqueous Li–O2 cells. J. Am. Chem. Soc. 135, 494–500 (2013).

    Article  Google Scholar 

  7. Sharon, D. et al. Oxidation of dimethyl sulfoxide solutions by electrochemical reduction of oxygen. J. Phys. Chem. Lett. 4, 3115–3119 (2013).

    Article  CAS  Google Scholar 

  8. Kwabi, D. et al. Chemical instability of dimethyl sulfoxide in lithium–air batteries. J. Phys. Chem. Lett. 5, 2850–2856 (2014).

    Article  CAS  Google Scholar 

  9. Walker, W. et al. A rechargeable Li–O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. J. Am. Chem. Soc. 135, 2076–2079 (2013).

    Article  CAS  Google Scholar 

  10. Elia, G. A. et al. An advanced lithium–air battery exploiting an ionic liquid-based electrolyte. Nano Lett. 14, 6572–6577 (2014).

    Article  CAS  Google Scholar 

  11. Meini, S., Piana, M., Nikolaos, T., Garsuch, A. & Gasteiger, H. A. The effect of water on the discharge capacity of a non-catalyzed carbon cathode for Li–O2 batteries. Electrochem. Solid-State Lett. 15, A45–A48 (2012).

    Article  CAS  Google Scholar 

  12. Meini, S., Solchenbach, S., Piana, M. & Gasteiger, H. A. The role of electrolyte solvent stability and electrolyte impurities in the electrooxidation of Li2O2 in Li–O2 batteries. J. Electrochem. Soc. 161, A1306–A1314 (2014).

    Article  CAS  Google Scholar 

  13. Schwenke, K. U., Metzger, M., Restle, T., Piana, M. & Gasteiger, H. A. The influence of water and protons on Li2O2 crystal growth in an aprotic Li–O2 cell. J. Electrochem Soc. 162, A573–A584 (2015).

    Article  CAS  Google Scholar 

  14. Aetukuri, N. B. et al. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries. Nature Chem. 7, 50–56 (2015).

    Article  CAS  Google Scholar 

  15. Johnson, L. et al. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nature Chem. 6, 1091–1099 (2014).

    CAS  Google Scholar 

  16. Adams, B. D. et al. Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge. Energy Environ. Sci. 6, 1772–1778 (2013).

    Article  CAS  Google Scholar 

  17. Horstmann, B., Gallant, B., Mitchel, R. R., Bessier, W. G. & Shao-Horn, Y. Rate-dependent morphology of Li2O2 growth in Li–O2 batteries. J. Phys. Chem. Lett. 4, 4217–4222 (2013).

    Article  CAS  Google Scholar 

  18. Chen, Y. H., Freunberger, S. A., Peng, Z. Q., Fontaine, O. & Bruce, P. G. Charging a Li–O2 battery using a redox mediator. Nature Chem. 5, 489–494 (2013).

    Article  Google Scholar 

  19. Lim, H. D. et al. Superior rechargeability and efficiency of lithium–oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. Angew. Chem. Int. Ed. 53, 3926–3931 (2014).

    Article  CAS  Google Scholar 

  20. Bergner, B. J., Schürmann, A., Peppler, K., Garsuch, A. & Janek, J. TEMPO: a mobile catalyst for rechargeable Li–O2 batteries. J. Am. Chem. Soc. 136, 15054–15064 (2014).

    Article  CAS  Google Scholar 

  21. Bender, C. L., Hartmann, P., Vračar, M., Adelhelm, P. & Janek, J. On the thermodynamics, the role of the carbon cathode, and the cycle life of the sodium superoxide (NaO2) battery. Adv. Energy Mater. 4, 1301863 (2014).

  22. Peled, E., Golodnitsky, D., Mazor, H., Goor, M. & Avshalomov, S. Parameter analysis of a practical lithium– and sodium–air electrical vehicle battery. J. Power Sources 196, 6835–6840 (2011).

    Article  CAS  Google Scholar 

  23. Hartmann, P. et al. Rechargeable room-temperature sodium superoxide (NaO2) battery. Nature Mater. 12, 228–232 (2013).

    Article  CAS  Google Scholar 

  24. Kim, J., Lim, H. D., Gwon, H. & Kang, K. Sodium–oxygen batteries with alkyl-carbonate and ether based electrolytes. Phys. Chem. Chem. Phys. 15, 3623–3629 (2013).

    Article  CAS  Google Scholar 

  25. Ren, X. & Yu, Y. A low-overpotential potassium–oxygen battery based on potassium superoxide. J. Am. Chem. Soc. 135, 2923–2926 (2013).

    Article  CAS  Google Scholar 

  26. Laoire, C. O., Mukerjee, S. & Abraham, K. M. Elucidating the mechanism of oxygen reduction for lithium–air battery applications. J. Phys. Chem. C 113, 20127–20134 (2009).

    Article  CAS  Google Scholar 

  27. Peng, Z. Q. et al. Oxygen reactions in a non-aqueous Li+ electrolyte. Angew. Chem. Int. Ed. 50, 6351–6355 (2011).

    Article  CAS  Google Scholar 

  28. Xia, C. et al. Evolution of Li2O2 growth and its effect on kinetics of Li–O2 batteries. ACS Appl. Mater. Interfaces 6, 12083–12092 (2014).

    Article  CAS  Google Scholar 

  29. Yang, J. et al. Evidence for lithium superoxide-like species in the discharge product of a Li–O2 battery. Phys. Chem. Chem. Phys. 15, 3764–3771 (2013).

    Article  CAS  Google Scholar 

  30. Kang, S. Y., Mo, Y., Ong, S. P. & Ceder, G. Nanoscale stabilization of sodium oxides: implications for Na–O2 batteries. Nano Lett. 14, 1016–1020 (2014).

    Article  CAS  Google Scholar 

  31. Sun, Q., Yang, Y. & Fu, Z. W. Electrochemical properties of room-temperature sodium–air batteries with non-aqueous electrolyte. Electrochem. Commun. 16, 22–25 (2012).

    Article  CAS  Google Scholar 

  32. Liu, W., Sun, Q., Yang, Y., Xie, J. Y. & Fu, Z. W. An enhanced electrochemical performance of a sodium–air battery with graphene nanosheets as air electrode catalysts. Chem. Commun. 49, 1951–1953 (2013).

    Article  CAS  Google Scholar 

  33. Jian, Z. et al. High capacity Na–O2 batteries with carbon nanotube paper as binder-free air cathode. J. Power Sources 251, 466–469 (2014).

    Article  CAS  Google Scholar 

  34. Li, Y. et al. Superior catalytic activity of nitrogen-doped graphene cathodes for high energy capacity sodium–air batteries. Chem. Commun. 49, 11731–11733 (2013).

    Article  CAS  Google Scholar 

  35. Yadegari, H. et al. On rechargeability and reaction kinetics of sodium–air batteries. Energy Environ. Sci. 7, 3747–3757 (2014).

    Article  CAS  Google Scholar 

  36. Hartmann, P. et al. A comprehensive study on the cell chemistry of the sodium superoxide (NaO2) battery. Phys. Chem. Chem. Phys. 15, 11661–11672 (2013).

    Article  CAS  Google Scholar 

  37. Lee, B. et al. First-principles study of the reaction mechanism in sodium–oxygen batteries. Chem. Mater. 26, 1048–1055 (2014).

    Article  CAS  Google Scholar 

  38. McCloskey, B. D., Garcia, J. M. & Luntz, A. C. Chemical and electrochemical differences in nonaqueous Li–O2 and Na–O2 batteries. J. Phys. Chem. Lett. 5, 1230–1235 (2014).

    Article  CAS  Google Scholar 

  39. Bielski, B. H. J., Cabelli, D. E. & Arudi, R. L. Reactivity of HO2/O2 radicals in aqueous solution. J. Phys. Chem. Ref. Data 14, 1041–1100 (1985).

    Article  CAS  Google Scholar 

  40. McCloskey, B. D. et al. On the efficacy of electrocatalysis in Li–O2 batteries. J. Am. Chem. Soc. 133, 18038–18041 (2011).

    Article  CAS  Google Scholar 

  41. Sawyer, D. & Valentine, J. S. How super is superoxide? Acc. Chem. Res. 14, 393–400 (1981).

    Article  CAS  Google Scholar 

  42. Chin, D.-H., Chiericato, G., Nanni, E. J. & Sawyer, D. T. Proton-induced disproportionation of superoxide ion in aprotic media. J. Am. Chem. Soc. 104, 1296–1299 (1982).

    Article  CAS  Google Scholar 

  43. Foote, C. S., Valentine, J. S., Greenberg, A. & Liebman, J. F. (ed.) Active Oxygen in Chemistry (Structure Energetics and Reactivity in Chemistry Series 2, Springer, 1995).

    Google Scholar 

  44. Ernst, S., Aldous, L. & Compton, R. G. The electrochemical reduction of oxygen at boron-doped diamond and glassy carbon electrodes. J. Electroanal. Chem. 663, 108–112 (2011).

    Article  CAS  Google Scholar 

  45. Kim, H. C. Progress in Battery 500 Project. in Proc. ILABS 2014 (IBM Research-Almaden Research Center, 2014).

  46. Xie, B. et al. New electrolytes using Li2O or Li2O2 oxides and tris(pentafluorophenyl) borane as boron based anion receptor for lithium batteries. Electrochem. Commun. 10, 1195–1197 (2008).

    Article  CAS  Google Scholar 

  47. Shanmukaraj, D. et al. Boron esters as tunable anion carriers for non-aqueous batteries electrochemistry. J. Am. Chem. Soc. 132, 3055–3062 (2010).

    Article  CAS  Google Scholar 

  48. Gowda, S. R., Brunet, A., Wallraff, G. M. & McCloskey, B. D. Implications of CO2 contamination in rechargeable nonaqueous Li–O2 batteries. J. Phys. Chem. Lett. 4, 276–279 (2013).

    Article  CAS  Google Scholar 

  49. Ganapathy, S. et al. The nature of Li2O2 oxidation in a Li-O2 battery revealed by operando X-ray diffraction. J. Am. Chem. Soc. 136, 16335–16344 (2014).

    Article  CAS  Google Scholar 

  50. Mo, Y. F., Ong, S. P. & Ceder, G. First-principles study of the oxygen evolution reaction of lithium peroxide in the lithium–air battery. Phys. Rev. B 84, 1–9 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from NRCan, through the EcoEII programme, and from NSERC, via the Canada Research Chair and Discovery programme (to L.F.N.) and scholarship programme (CGS-D, to R.B. and B.A.). The Waterloo Institute of Nanotechnology is acknowledged for a WIN fellowship to R.F. The authors thank G. Popov for assistance with the Rietveld refinement of pure NaOTf.

Author information

Authors and Affiliations

Authors

Contributions

C.X. and L.F.N. designed this study. C.X. and R.F. prepared materials and carried out the electrochemical experiments, together with R.B., who performed the online mass spectrometry studies. R.B. carried out the SEM measurements and B.A. performed the RRDE experiments. L.F.N., together with all co-authors, wrote the manuscript, and all authors contributed to the scientific discussion.

Corresponding author

Correspondence to Linda F. Nazar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1282 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, C., Black, R., Fernandes, R. et al. The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries. Nature Chem 7, 496–501 (2015). https://doi.org/10.1038/nchem.2260

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2260

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing