Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds

Abstract

Chemists and material scientists have often focused on the properties of previously reported compounds, but neglect numerous unreported but chemically plausible compounds that could have interesting properties. For example, the 18-valence electron ABX family of compounds features examples of topological insulators, thermoelectrics and piezoelectrics, but only 83 out of 483 of these possible compounds have been made. Using first-principles thermodynamics we examined the theoretical stability of the 400 unreported members and predict that 54 should be stable. Of those previously unreported ‘missing’ materials now predicted to be stable, 15 were grown in this study; X-ray studies agreed with the predicted crystal structure in all 15 cases. Among the predicted and characterized properties of the missing compounds are potential transparent conductors, thermoelectric materials and topological semimetals. This integrated process—prediction of functionality in unreported compounds followed by laboratory synthesis and characterization—could be a route to the systematic discovery of hitherto missing, realizable functional materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: N–X–(8−N) compounds obtained by the insertion of a group X element (Ni, Pd, Pt) into an eight-valence electron lattice.
Figure 2: (N+1)–IX–(8−N) compounds obtained by the insertion of a group IX element (Co, Rh, Ir) into a nine-valence electron lattice.
Figure 3: The 18-electron ABX compounds predicted by theory and synthesized in this work.
Figure 4: Discovery of the HfIrSb ternary material.
Figure 5: Electronic structure of 18-electron ABX in the cubic LiAlSi-type structure ().

Similar content being viewed by others

References

  1. FIZ Karlsruhe. Inorganic Crystal Structure Database (Karlsruhe, 2006).

  2. Kabekkodu, S. Powder Diffraction File (International Centre for Diffraction Data, 1997).

    Google Scholar 

  3. Villars, P. & Calvert, L. D. Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM International, 1991).

    Google Scholar 

  4. Bloch, J. et al. Prediction and hydrogen acceleration of ordering in iron–vanadium alloys. Phys. Rev. Lett. 108, 215503 (2012).

    Article  CAS  Google Scholar 

  5. Feng, J., Hennig, R. G., Ashcroft, N. W. & Hoffmann, R. Emergent reduction of electronic state dimensionality in dense ordered Li–Be alloys. Nature 451, 445–448 (2008).

    Article  CAS  Google Scholar 

  6. Lu, Z. W., Wei, S-H., Zunger, A., Frota-Pessoa, S. & Ferreira, L. G. First-principles statistical mechanics of structural stability of intermetallic compounds. Phys. Rev. B 44, 512–544 (1991).

    Article  CAS  Google Scholar 

  7. Pickard, C. J. & Needs, R. J. Structure of phase III of solid hydrogen. Nature Phys. 3, 473–476 (2007).

    Article  CAS  Google Scholar 

  8. Ceder, G. Opportunities and challenges for first-principles materials design and applications to Li battery materials. Mater. Res. Soc. Bull. 35, 693–701 (2010).

    Article  CAS  Google Scholar 

  9. Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. & Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Mater. 5, 909–913 (2006).

    Article  CAS  Google Scholar 

  10. Hautier, G. et al. Phosphates as lithium-ion battery cathodes: an evaluation based on high-throughput ab initio calculations. Chem. Mater. 23, 3495–3508 (2011).

    Article  CAS  Google Scholar 

  11. Katsnelson, M. I., Irkhin, V. Y., Chioncel, L., Lichtenstein, A. I. & de Groot, R. A. Half-metallic ferromagnets: from band structure to many-body effects. Rev. Mod. Phys. 80, 315–378 (2008).

    Article  CAS  Google Scholar 

  12. Nielsen, M. D., Ozolins, V. & Heremans, J. P. Lone pair electrons minimize lattice thermal conductivity. Energy Environ. Sci. 6, 570–578 (2013).

    Article  CAS  Google Scholar 

  13. Wang, S., Wang, Z., Setyawan, W., Mingo, N. & Curtarolo, S. Assessing the thermoelectric properties of sintered compounds via high-throughput ab-initio calculations. Phys. Rev. X 1, 021012 (2011).

    Google Scholar 

  14. Yang, K., Setyawan, W., Wang, S., Nardelli, M. B. & Curtarolo, S. A search model for topological insulators with high-throughput robustness descriptors. Nature Mater. 11, 614–619 (2012).

    Article  CAS  Google Scholar 

  15. Yu, L. & Zunger, A. Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials. Phys. Rev. Lett. 108, 068701 (2012).

    Article  CAS  Google Scholar 

  16. Curtarolo, S. et al. The high-throughput highway to computational materials design. Nature Mater. 12, 191–201 (2013).

    Article  CAS  Google Scholar 

  17. Butler, W. H., Zhang, X-G., Schulthess, T. C. & MacLaren, J. M. Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. Phys. Rev. B 63, 054416 (2001).

    Article  CAS  Google Scholar 

  18. Chen, H. et al. Carbonophosphates: a new family of cathode materials for Li-ion batteries identified computationally. Chem. Mater. 24, 2009–2016 (2012).

    Article  CAS  Google Scholar 

  19. d'Avezac, M., Luo, J. W., Chanier, T. & Zunger, A. Genetic-algorithm discovery of a direct-gap and optically allowed superstructure from indirect-gap Si and Ge semiconductors. Phys. Rev. Lett. 108, 027401 (2012).

    Article  CAS  Google Scholar 

  20. Li, Q. et al. Superhard and superconducting structures of BC5. J. Appl. Phys. 108, 023507 (2010).

    Article  CAS  Google Scholar 

  21. Sofo, J. O., Chaudhari, A. S. & Barber, G. D. Graphane: a two-dimensional hydrocarbon. Phys. Rev. B 75, 153401 (2007).

    Article  CAS  Google Scholar 

  22. Badzian, A. & Badzian, T. Recent developments in hard materials. Int. J. Refract. Metals Hard Mater. 15, 3–12 (1997).

    Article  CAS  Google Scholar 

  23. Gruhn, T. Comparative ab initio study of half-Heusler compounds for optoelectronic applications. Phys. Rev. B 82, 125210 (2010).

    Article  CAS  Google Scholar 

  24. Roy, A., Bennett, J. W., Rabe, K. M. & Vanderbilt, D. Half-Heusler semiconductors as piezoelectrics. Phys. Rev. Lett. 109, 037602 (2012).

    Article  CAS  Google Scholar 

  25. Sahu, B. R. & Kleinman, L. PtN: a zinc-blende metallic transition-metal compound. Phys. Rev. B 71, 041101 (2005).

    Article  CAS  Google Scholar 

  26. Vidal, J., Zhang, X., Yu, L., Luo, J-W. & Zunger, A. False-positive and false-negative assignments of topological insulators in density functional theory and hybrids. Phys. Rev. B 84, 041109 (2011).

    Article  CAS  Google Scholar 

  27. Chadov, S. et al. Tunable multifunctional topological insulators in ternary Heusler compounds. Nature Mater. 9, 541–545 (2010).

    Article  CAS  Google Scholar 

  28. Lin, H. et al. Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. Nature Mater. 9, 546–549 (2010).

    Article  CAS  Google Scholar 

  29. Xiao, D. et al. Half-Heusler compounds as a new class of three-dimensional topological insulators. Phys. Rev. Lett. 105, 096404 (2010).

    Article  CAS  Google Scholar 

  30. Yang, J. et al. Evaluation of half-Heusler compounds as thermoelectric materials based on the calculated electrical transport properties. Adv. Funct. Mater. 18, 2880–2888 (2008).

    Article  CAS  Google Scholar 

  31. Abegg, R. Die Valenz und das periodische System. Versuch einer Theorie der Molekularverbindungen. Z. Anorg. Chem. 39, 330–380 (1904).

    Article  CAS  Google Scholar 

  32. Hohl, H. et al. New compounds with MgAgAs-type structure: NbIrSn and NbIrSb. J. Phys. A 10, 7843–7850 (1998).

    CAS  Google Scholar 

  33. Haase, M. G., Schmidt, T., Richter, C. G., Block, H. & Jeitschko, W. Equiatomic rare earth (Ln) transition metal antimonides LnTSb (T = Rh, Ir) and bismuthides LnTBi (T = Rh, Ni, Pd, Pt). J. Solid State Chem. 168, 18–27 (2002).

    Article  CAS  Google Scholar 

  34. Casper, F., Seshadri, R. & Felser, C. Semiconducting half-Heusler and LiGaGe structure type compounds. Phys. Status Solidi A 206, 1090–1095 (2009).

    Article  CAS  Google Scholar 

  35. Yan, F. et al. Design of TaIrGe: a ternary half-Heusler transparent hole conductor. Preprint at http://arXiv:1406.0872 (2014).

  36. Mbaye, A. A., Ferreira, L. G. & Zunger, A. First-principles calculation of semiconductor-alloy phase diagrams. Phys. Rev. Lett. 58, 49–52 (1987).

    Article  CAS  Google Scholar 

  37. Ferreira, L. G., Wei, S-H. & Zunger, A. First-principles calculation of alloy phase diagrams: the renormalized-interaction approach. Phys. Rev. B 40, 3197–3231 (1989).

    Article  CAS  Google Scholar 

  38. Akbarzadeh, A. R., Ozoliņš, V. & Wolverton, C. First-principles determination of multicomponent hydride phase diagrams: application to the Li–Mg–N–H system. Adv. Mater. 19, 3233–3239 (2007).

    Article  CAS  Google Scholar 

  39. Zhang, X., Stevanovic, V., d'Avezac, M., Lany, S. & Zunger, A. Prediction of A2BX4 metal–chalcogenide compounds via first-principles thermodynamics. Phys. Rev. B 86, 014109 (2012).

    Article  CAS  Google Scholar 

  40. Zhang, X., Yu, L., Zakutayev, A. & Zunger, A. Sorting stable versus unstable hypothetical compounds: the case of multi-functional ABX half-Heusler filled tetrahedral structures. Adv. Funct. Mater. 22, 1425–1435 (2012).

    Article  CAS  Google Scholar 

  41. Carrete, J., Li, W., Mingo, N., Wang, S. & Curtarolo, S. Finding unprecedentedly low-thermal-conductivity half-Heusler semiconductors via high-throughput materials modeling. Phys. Rev. X 4, 011019 (2014).

    Google Scholar 

  42. Zakutayev, A. et al. Theoretical prediction and experimental realization of new stable inorganic materials using the inverse design approach. J. Am. Chem. Soc. 135, 10048–10054 (2013).

    Article  CAS  Google Scholar 

  43. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Erratum: ‘Hybrid functionals based on a screened Coulomb potential’. J. Chem. Phys. 124, 219906 (2006).

    Article  CAS  Google Scholar 

  44. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  CAS  Google Scholar 

  45. Sakurada, S. & Shutoh, N. Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds. Appl. Phys. Lett. 86, 082105 (2005).

    Article  CAS  Google Scholar 

  46. Fazzio, A., Caldas, M. J. & Zunger, A. Many-electron multiplet effects in the spectra of 3d impurities in heteropolar semiconductors. Phys. Rev. B 30, 3430–3455 (1984).

    Article  CAS  Google Scholar 

  47. Kawazoe, H. et al. p-type electrical conduction in transparent thin films of CuAlO2 . Nature 389, 939–942 (1997).

    Article  CAS  Google Scholar 

  48. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  49. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. A 21, 395502 (2009).

    Google Scholar 

  50. Kubelka, P. & Munk, F. Ein beitrag zur Optik der Farbanstriche. Z. Tech. Phys. 12, 593–604 (1931).

    Google Scholar 

  51. Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37–46 (1968).

    Article  CAS  Google Scholar 

  52. Hong, B-S., Ford, S. J. & Mason, T. O. Equilibrium electrical property measurements in electroceramics. Key Engineering Mater. 125–126, 163–186 (1996).

    Article  Google Scholar 

  53. McLachlan, D. S., Blaszkiewicz, M. & Newnham, R. E. Electrical resistivity of composites. J. Am. Ceram. Soc. 73, 2187–2203 (1990).

    Article  CAS  Google Scholar 

  54. Smits, F. M. Measurement of sheet resistivities with the four-point probe. Bell System Tech. J. 37, 711–718 (1958).

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed at Northwestern University and the University of Colorado Boulder with funding provided by the US Department of Energy, Office of Science, Basic Energy Sciences, and Energy Frontier Research Centers, under Contract No. DE- AC36-08GO28308 to the National Renewable Energy Laboratory. We thank G. Trimarchi for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

X.Z. performed the stability calculations as well as property calculations other than the phonon and dielectric constants carried out by L.Y. R.G., Y.L., L.H., T.O.L.S. and D.C. performed the synthesis and characterization of new ABX materials. The experimental work was supervised by K.R.P. Furthermore, X.Z., R.G. and L.Y. contributed to the writing of the paper. K.R.P. and A.Z. directed the analysis of the results and writing of the paper.

Corresponding authors

Correspondence to Kenneth R. Poeppelmeier or Alex Zunger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3257 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautier, R., Zhang, X., Hu, L. et al. Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds. Nature Chem 7, 308–316 (2015). https://doi.org/10.1038/nchem.2207

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2207

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing