Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Combined biomass valorization and hydrogen production in a photoelectrochemical cell

Subjects

Abstract

In a typical hydrogen-producing photoelectrochemical cell (PEC), water reduction at the cathode (producing hydrogen) is accompanied by water oxidation at the anode (producing oxygen). This anode reaction is, however, not kinetically favourable. Here we investigate the possibility of utilizing solar energy for biomass conversion by performing the oxidation of 5-hydroxymethylfurfural (HMF) into 2,5-furandicarboxylic acid (FDCA) at the anode of a PEC. HMF is a key intermediate in biomass conversion, and FDCA is an important monomer for the production of numerous polymers. Using 2,2,6,6-tetramethylpiperidine-1-oxyl as a mediator, we obtained a near-quantitative yield and 100% Faradaic efficiency at ambient conditions without the use of precious-metal catalysts. This reaction is also thermodynamically and kinetically more favourable than water oxidation. Our results suggest that solar-driven biomass conversion can be a viable anode reaction that has the potential to increase both the efficiency and the utility of PECs constructed for solar-fuel production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecules involved with HMF oxidation.
Figure 2: Electrochemical TEMPO-mediated HMF oxidation.
Figure 3: Photoelectrochemical TEMPO-mediated HMF oxidation.
Figure 4: Schematic comparison of the photoelectrochemical and electrochemical cells.
Figure 5: Electrochemical TEMPO-mediated HMF oxidation using carbon felt.

Similar content being viewed by others

References

  1. Wrighton, M. S. Photoelectrochemical conversion of optical energy to electricity and fuels. Acc. Chem. Res. 12, 303–310 (1979).

    Article  CAS  Google Scholar 

  2. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    Article  CAS  Google Scholar 

  3. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    Article  CAS  Google Scholar 

  4. Kumar, B. et al. Photochemical and photoelectrochemical reduction of CO2 . Annu. Rev. Phys. Chem. 63, 541–569 (2012).

    Article  CAS  Google Scholar 

  5. Centi, G. & Perathoner, S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal. Today 148, 191–205 (2009).

    Article  CAS  Google Scholar 

  6. Hu, L. et al. Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes. RSC Adv. 2, 11184–11206 (2012).

    Article  CAS  Google Scholar 

  7. Corma, A., Iborra, S. & Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2502 (2007).

    Article  CAS  Google Scholar 

  8. Tong, X., Ma, Y. & Li, Y. Biomass into chemicals: conversion of sugars to furan derivatives by catalytic processes. Appl. Catal. A 385, 1–13 (2010).

    Article  CAS  Google Scholar 

  9. Rosatella, A. A., Simeonov, S. P., Frade, R. F. & Afonso, C. A. 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem. 13, 754–793 (2011).

    Article  CAS  Google Scholar 

  10. Wang, T., Nolte, M. W. & Shanks, B. H. Catalytic dehydration of C6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical. Green Chem. 16, 548–572 (2014).

    Article  CAS  Google Scholar 

  11. Bozell, J. J. & Petersen, G. R. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy's ‘top 10’ revisited. Green Chem. 12, 539–554 (2010).

    Article  CAS  Google Scholar 

  12. Gandini, A., Silvestre, A. J., Neto, C. P., Sousa, A. F. & Gomes, M. The furan counterpart of poly (ethylene terephthalate): an alternative material based on renewable resources. J. Polym. Sci. A 47, 295–298 (2009).

    Article  CAS  Google Scholar 

  13. Verdeguer, P., Merat, N. & Gaset, A. Oxydation catalytique du HMF en acide 2,5-furane dicarboxylique. J. Mol. Catal. 85, 327–344 (1993).

    Article  CAS  Google Scholar 

  14. Casanova, O., Iborra, S. & Corma, A. Biomass into chemicals: aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with gold nanoparticle catalysts. ChemSusChem 2, 1138–1144 (2009).

    Article  CAS  Google Scholar 

  15. Gorbanev, Y. Y., Klitgaard, S. K., Woodley, J. M., Christensen, C. H. & Riisager, A. Gold-catalyzed aerobic oxidation of 5-hydroxymethylfurfural in water at ambient temperature. ChemSusChem 2, 672–675 (2009).

    Article  CAS  Google Scholar 

  16. Villa, A., Schiavoni, M., Campisi, S., Veith, G. M. & Prati, L. Pd-modified Au on carbon as an effective and durable catalyst for the direct oxidation of HMF to 2,5-furandicarboxylic acid. ChemSusChem 6, 609–612 (2013).

    Article  CAS  Google Scholar 

  17. Taarning, E., Nielsen, I. S., Egeblad, K., Madsen, R. & Christensen, C. H. Chemicals from renewables: aerobic oxidation of furfural and hydroxymethylfurfural over gold catalysts. ChemSusChem 1, 75–78 (2008).

    Article  CAS  Google Scholar 

  18. Davis, S. E., Houk, L. R., Tamargo, E. C., Datye, A. K. & Davis, R. J. Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts. Catal. Today 160, 55–60 (2011).

    Article  CAS  Google Scholar 

  19. Pasini, T. et al. Selective oxidation of 5-hydroxymethyl-2-furfural using supported gold–copper nanoparticles. Green Chem. 13, 2091–2099 (2011).

    Article  CAS  Google Scholar 

  20. Grabowski, G., Lewkowski, J. & Skowroński, R. The electrochemical oxidation of 5-hydroxymethylfurfural with the nickel oxide/hydroxide electrode. Electrochim. Acta 36, 1995 (1991).

    Article  CAS  Google Scholar 

  21. Skowroski, R., Cottier, L., Descotes, G. & Lewkowski, J. Selective anodic oxidation of 5-hydroxymethylfurfural. Synthesis 1996, 1291–1292 (1996).

    Article  Google Scholar 

  22. Vuyyuru, K. R. & Strasser, P. Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis. Catal. Today 195, 144–154 (2012).

    Article  CAS  Google Scholar 

  23. Chadderdon, D. J. et al. Electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on supported Au and Pd bimetallic nanoparticles. Green Chem. 16, 3778–3786 (2014).

    Article  CAS  Google Scholar 

  24. Schnatbaum, K. & Schäfer, H. J. Electroorganic synthesis 66: selective anodic oxidation of carbohydrates mediated by TEMPO. Synthesis 1999, 864–872 (1999).

    Article  Google Scholar 

  25. Dijkman, W. P., Groothuis, D. E. & Fraaije, M. W. Enzyme-catalyzed oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid. Angew. Chem. Int. Ed. 53, 6515–6518 (2014).

    Article  CAS  Google Scholar 

  26. Davis, S. E., Zope, B. N. & Davis, R. J. On the mechanism of selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over supported Pt and Au catalysts. Green Chem. 14, 143–147 (2012).

    Article  CAS  Google Scholar 

  27. Kim, T. W. & Choi, K-S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014).

    Article  CAS  Google Scholar 

  28. Park, Y., McDonald, K. J. & Choi, K-S. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 42, 2321–2337 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Wisconsin-Madison, the Camille and Henry Dreyfus Postdoctoral Program in Environmental Chemistry and the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy through Grant DE-SC0008707. The authors thank L. M. Smith and Q. Li for the use of the HPLC.

Author information

Authors and Affiliations

Authors

Contributions

K-S.C. supervised the project. H.G.C. carried out all the experiments. H.G.C. and K-S.C. analysed the results and prepared the manuscript.

Corresponding author

Correspondence to Kyoung-Shin Choi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1182 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cha, H., Choi, KS. Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nature Chem 7, 328–333 (2015). https://doi.org/10.1038/nchem.2194

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2194

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing