Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rhodanine hydrolysis leads to potent thioenolate mediated metallo-β-lactamase inhibition

Abstract

The use of β-lactam antibiotics is compromised by resistance, which is provided by β-lactamases belonging to both metallo (MBL)- and serine (SBL)-β-lactamase subfamilies. The rhodanines are one of very few compound classes that inhibit penicillin-binding proteins (PBPs), SBLs and, as recently reported, MBLs. Here, we describe crystallographic analyses of the mechanism of inhibition of the clinically relevant VIM-2 MBL by a rhodanine, which reveal that the rhodanine ring undergoes hydrolysis to give a thioenolate. The thioenolate is found to bind via di-zinc chelation, mimicking the binding of intermediates in β-lactam hydrolysis. Crystallization of VIM-2 in the presence of the intact rhodanine led to observation of a ternary complex of MBL, a thioenolate fragment and rhodanine. The crystallographic observations are supported by kinetic and biophysical studies, including 19F NMR analyses, which reveal the rhodanine-derived thioenolate to be a potent broad-spectrum MBL inhibitor and a lead structure for the development of new types of clinically useful MBL inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mode of action of β-lactams and their inactivation by β-lactamases.
Figure 2: Crystallographic analysis unexpectedly reveals that ML302 undergoes fragmentation to yield a thioenolate.
Figure 3: Crystallographic analysis reveals that the binding modes of ML302M and ML302F are similar to those of the MBL-product complexes resulting from β-lactam antibiotic hydrolysis.
Figure 4: Inhibition of VIM-2 by ML302, ML302F and ML302M reveals >20-fold difference in IC50 values for ML302M compared to ML302 or ML302F alone.
Figure 5: Crystallographic analysis of ML302F in complex with Bacillus cereus MBL (BcII) reveals that the observed binding mode of ML302 also applies to other MBLs.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Butler, M. S., Blaskovich, M. A. & Cooper, M. A. Antibiotics in the clinical pipeline in 2013. J. Antibiot. (Tokyo) 66, 571–591 (2013).

    Article  CAS  Google Scholar 

  2. Bush, K. & Jacoby, G. A. Updated functional classification of β-lactamases. Antimicrob. Agents Chemother. 54, 969–976 (2010).

    Article  CAS  Google Scholar 

  3. Mattei, P. J., Neves, D. & Dessen, A. Bridging cell wall biosynthesis and bacterial morphogenesis. Curr. Opin. Struct. Biol. 20, 749–575 (2010).

    Article  CAS  Google Scholar 

  4. Walsh, T. R., Toleman, M. A., Poirel, L. & Nordmann, P. Metallo-β-lactamases: the quiet before the storm? Clin. Microbiol. Rev. 18, 306–325 (2005).

    Article  CAS  Google Scholar 

  5. Cornaglia, G., Giamarellou, H. & Rossolini, G. M. Metallo-β-lactamases: a last frontier for β-lactams? Lancet Infect. Dis. 11, 381–393 (2011).

    Article  CAS  Google Scholar 

  6. Page, M. I. & Badarau, A. The mechanisms of catalysis by metallo β-lactamases. Bioinorg. Chem. Appl. 2008, 576297 (2008).

    Article  Google Scholar 

  7. Ehmann, D. E. et al. Kinetics of avibactam inhibition against class A, C, and D β-lactamases. J. Biol. Chem. 288, 27960–27971 (2013).

    Article  CAS  Google Scholar 

  8. Bebrone, C. et al. Current challenges in antimicrobial chemotherapy: focus on β-lactamase inhibition. Drugs 70, 651–679 (2010).

    Article  CAS  Google Scholar 

  9. King A. M. et al. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature 510, 503–506 (2014).

    Article  CAS  Google Scholar 

  10. Crowder, M. W., Spencer, J. & Vila, A. J. Metallo-β-lactamases: novel weaponry for antibiotic resistance in bacteria. Acc. Chem. Res. 39, 721–728 (2006).

    Article  CAS  Google Scholar 

  11. Bush, K. Proliferation and significance of clinically relevant β-lactamases. Ann. NY Acad. Sci. 1277, 84–90 (2013).

    Article  CAS  Google Scholar 

  12. Grant, E. B. et al. The synthesis and SAR of rhodanines as novel class C β-lactamase inhibitors. Bioorg. Med. Chem. Lett. 10, 2179–2182 (2000).

    Article  CAS  Google Scholar 

  13. Zervosen, A. et al. Interactions between penicillin-binding proteins (PBPs) and two novel classes of PBP inhibitors, arylalkylidene rhodanines and arylalkylidene iminothiazolidin-4-ones. Antimicrob. Agents Chemother. 48, 961–969 (2004).

    Article  CAS  Google Scholar 

  14. Zervosen, A., Sauvage, E., Frère, J. M., Charlier, P. & Luxen, A. Development of new drugs for an old target—the penicillin binding proteins. Molecules 17, 12478–12505 (2012).

    Article  CAS  Google Scholar 

  15. Spicer, T. et al. Probe Reports from the NIH Molecular Libraries Program (US National Center for Biotechnology Information, 2010).

    Google Scholar 

  16. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  17. Wachino, J. et al. Structural insights into the subclass B3 metallo-β-lactamase SMB-1 and the mode of inhibition by the common metallo-β-lactamase inhibitor mercaptoacetate. Antimicrob. Agents Chemother. 57, 101–109 (2013).

    Article  CAS  Google Scholar 

  18. Karsisiotis, A. I., Damblon, C. F. & Roberts, G. C. Solution structures of the Bacillus cereus metallo-β-lactamase BcII and its complex with the broad spectrum inhibitor R-thiomandelic acid. Biochem J. 456, 397–407 (2013).

    Article  CAS  Google Scholar 

  19. Garcia-Saez, I. et al. The 1.5-Å structure of Chryseobacterium meningosepticum zinc β-lactamase in complex with the inhibitor, D-captopril. J. Biol. Chem. 278, 23868–23873 (2003).

    Article  CAS  Google Scholar 

  20. Tsang, W. Y. et al. The inhibition of metallo-β-lactamase by thioxo-cephalosporin derivatives. Bioorg. Med. Chem. Lett. 14, 1737–1739 (2004).

    Article  CAS  Google Scholar 

  21. Izquierdo, A. & Garriga, N. Dissociation constants and reactions of 3-phenyl and 3-cyclohexyl-2-mercaptopropenoic and 3-phenyl-2-mercaptopropanoic acids. Talanta 32, 669–674 (1985).

    Article  CAS  Google Scholar 

  22. King, D. T., Worrall, L. J., Gruninger, R. & Strynadka, N. C. J. New Delhi metallo-β-lactamase: structural insights into β-lactam recognition and inhibition. J. Am. Chem. Soc. 134, 11362–11365 (2012).

    Article  CAS  Google Scholar 

  23. Fast, W. & Sutton, L. D. Metallo-β-lactamase: inhibitors and reporter substrates. Biochim. Biophys. Acta. 1834, 1648–1659 (2013).

    Article  CAS  Google Scholar 

  24. van Berkel, S. S. et al. Assay platform for clinically relevant metallo-β-lactamases. J. Med. Chem. 56, 6945–6953 (2013).

    Article  CAS  Google Scholar 

  25. Siemann, S., Clarke, A. J., Viswanatha, T. & Dmitrienko, G. I. Thiols as classical and slow-binding inhibitors of IMP-1 and other binuclear metallo-β-lactamases. Biochemistry 42, 1673–1683 (2003).

    Article  CAS  Google Scholar 

  26. Makena, A. et al. Chromophore-linked substrate (CLS405): probing metallo-β-lactamase activity and inhibition. ChemMedChem 8, 1923–1929 (2013).

    Article  CAS  Google Scholar 

  27. Chen, H., Viel, S., Ziarelli, F. & Peng, L. 19F NMR: a valuable tool for studying biological events. Chem. Soc. Rev. 42, 7971–7982 (2013).

    Article  CAS  Google Scholar 

  28. Rydzik, A. M. et al. Monitoring conformational changes in the NDM-1 metallo-β-lactamase by 19F NMR spectroscopy. Angew. Chem. Int. Ed. 53, 3129–3133 (2014).

    Article  CAS  Google Scholar 

  29. Nordmann, P., Naas, T. & Poirel, L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 17, 1791–1798 (2011).

    Article  CAS  Google Scholar 

  30. Zhanel, G. G. et al. Ceftazidime-avibactam: a novel cephalosporin/β-lactamase inhibitor combination. Drugs 73, 159–177 (2013).

    Article  CAS  Google Scholar 

  31. Furdas, S. D., Shekfeh, S., Kannan, S., Sippl, W. & Jung, M. Rhodanine carboxylic acids as novel inhibitors of histone acetyltransferases. MedChemComm 3, 305–311 (2012).

    Article  CAS  Google Scholar 

  32. Tomasic, T. & Peterlin Masic, L. Rhodanine as a scaffold in drug discovery: a critical review of its biological activities and mechanisms of target modulation. Expert Opin. Drug. Discov. 7, 549–560 (2012).

    Article  CAS  Google Scholar 

  33. Mendgen, T., Steuer, C. & Klein, C. D. Privileged scaffolds or promiscuous binders: a comparative study on rhodanines and related heterocycles in medicinal chemistry. J. Med. Chem. 55, 743–753 (2012).

    Article  CAS  Google Scholar 

  34. Welsch, M. E., Snyder, S. A. & Stockwell, B. R. Privileged scaffolds for library design and drug discovery. Curr. Opin. Chem. Biol. 14, 347–361 (2010).

    Article  CAS  Google Scholar 

  35. Tomasic, T. & Masic, L. P. Rhodanine as a privileged scaffold in drug discovery. Curr. Med. Chem. 16, 1596–1629 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from a Medical Research Council (MRC)/Canadian grant G1100135 and the Biotechnology and Biological Sciences Research Council (BBSRC; J.B. and C.J.S). Cancer Research UK (CRUK) is acknowledged for supporting S.S.v.B. and C.J.S. The authors acknowledge support from the Dulverton Trust (A.M.R.), the Royal Society Dorothy Hodgkin Fellowship (A.K.) and a German Academic Exchange Service (DAAD) Postdoctoral Fellowship (K-D.U.). The authors thank T. Walsh for supplying the clinically isolated strains used in this study.

Author information

Authors and Affiliations

Authors

Contributions

J.B., S.S.v.B. and C.J.S. conceived the research and designed the experiments. S.S.v.B. and K-D.U. synthesized and characterized the compounds used for the study. J.B. and I.P carried out the kinetic studies, purified the enzymes used in the biochemical studies, and crystallized the inhibitors with VIM-2 and BcII MBLs. W.S.A., J.B. and M.A.M. collected X-ray data and solved the crystal structures. A.M.R. designed and performed the NMR spectroscopy experiments with the help of J.B. and T.D.W.C. M.B.A. designed and performed the MIC experiments with the help of J.S. A.K. performed the cytotoxicity testing and helped with the design of the selectivity assays. J.B and C.J.S. wrote the first draft of the manuscript. All authors discussed the results and contributed to writing the manuscript.

Corresponding author

Correspondence to Christopher J. Schofield.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1613 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brem, J., van Berkel, S., Aik, W. et al. Rhodanine hydrolysis leads to potent thioenolate mediated metallo-β-lactamase inhibition. Nature Chem 6, 1084–1090 (2014). https://doi.org/10.1038/nchem.2110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2110

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing