Review Article | Published:

Towards greener and more sustainable batteries for electrical energy storage

Nature Chemistry volume 7, pages 1929 (2015) | Download Citation

This article has been updated

Abstract

Ever-growing energy needs and depleting fossil-fuel resources demand the pursuit of sustainable energy alternatives, including both renewable energy sources and sustainable storage technologies. It is therefore essential to incorporate material abundance, eco-efficient synthetic processes and life-cycle analysis into the design of new electrochemical storage systems. At present, a few existing technologies address these issues, but in each case, fundamental and technological hurdles remain to be overcome. Here we provide an overview of the current state of energy storage from a sustainability perspective. We introduce the notion of sustainability through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability. With the same themes in mind, we also highlight current and future electrochemical storage systems beyond lithium-ion batteries. The complexity and importance of recycling battery materials is also discussed.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Change history

  • 19 November 2014

    In the html version of this Review originally published, the 'Accepted' date was incorrect, and should have read 11 September 2014. The PDF and print versions are correct.

References

  1. 1.

    Powering the planet. MRS Bulletin 32, 808–820 (2007).

  2. 2.

    International Energy Agency Key World Energy Statistics 2011 (IEA, 2011); available at .

  3. 3.

    Conférences sur quelques problèmes actuels de la Chimie Physique et Cosmique (Gauthier-Villars et Cie, 1922).

  4. 4.

    & Green Chemistry: Theory and Practice (Oxford Univ. Press, 1998).

  5. 5.

    & Materials for fuel-cell technologies. Nature 414, 345–352 (2001).

  6. 6.

    , , , & in Proc. 5th Int. Conf. EcoBalance 293–294 (2002).

  7. 7.

    & A Review of Battery Life-Cycle Analysis: State of Knowledge and Critical Needs (Argonne National Laboratory, 2010).

  8. 8.

    & Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy. Environ. Sci. Technol. 42, 3170–3176 (2008).

  9. 9.

    Centre d'Analyse stratégique La Voiture de demain: carburants et électricité no. 37 (La Documentation Française, 2011).

  10. 10.

    International Energy Agency CO2 Emissions from Fuel Combustion 2012 (IEA, 2012); available at .

  11. 11.

    International Energy Agency Coal Information 2012 (IEA, 2012); available at .

  12. 12.

    et al. Contribution of Li-ion batteries to the environmental impact of electric vehicles. Environ. Sci. Technol. 44, 6550–6556 (2010).

  13. 13.

    , & Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste. Environ. Sci. Technol. 47, 5495–5503 (2013).

  14. 14.

    et al. Life cycle assessment of a lithium-ion battery vehicle pack. J. Ind. Ecol. 18, 113–124 (2014).

  15. 15.

    , , & Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries. Environ. Sci. Technol. 46, 12704–12710 (2012).

  16. 16.

    & Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices. Energ. Environ. Sci. 4, 2003–2019 (2011).

  17. 17.

    et al. Recycling rechargeable lithium ion batteries: critical analysis of natural resource savings. Resour. Conserv. Recy. 54, 229–234 (2010).

  18. 18.

    , & Novel low temperature approaches for the eco-efficient synthesis of electrode materials for secondary Li-ion batteries. C.R. Chim. 13, 106–116 (2010).

  19. 19.

    et al. Hunting for better Li-based electrode materials via low temperature inorganic synthesis. Chem. Mater. 22, 724–739 (2010).

  20. 20.

    , , & Eco-efficient synthesis of LiFePO4 with different morphologies for Li-ion batteries. Electrochem. Solid State Lett. 12, A39–A44 (2009).

  21. 21.

    Viruses electrify battery research. Nature Nanotech. 4, 341–342 (2009).

  22. 22.

    et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312, 885–888 (2006).

  23. 23.

    et al. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science 324, 1051–1055 (2009).

  24. 24.

    et al. From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries. ChemSusChem 1, 348–355 (2008).

  25. 25.

    Towards sustainable and renewable systems for electrochemical energy storage. ChemSusChem 1, 777–779 (2008).

  26. 26.

    , , & High energy storage Li-O2 and Li-S batteries. Nature Mater. 11, 19–29 (2011).

  27. 27.

    & Aluminum as anode for energy storage and conversion: a review. J. Power Sources 110, 1–10 (2002).

  28. 28.

    Key challenges in future Li-battery research. Phil. Trans. R. Soc. A 368, 3227–3241 (2010).

  29. 29.

    et al. A high capacity calcium primary cell based on the Ca–S system. Adv. Energ. Mater. 3, 1056–1061 (2013).

  30. 30.

    , & Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

  31. 31.

    British patent 3608 (1882).

  32. 32.

    , , & An overview of the chemical composition of biomass. Fuel 89, 913–933 (2010).

  33. 33.

    & Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem. Lett. 30, 642–643 (2001).

  34. 34.

    et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem. 17, 3112–312 (2007).

  35. 35.

    & Lithium insertion into Fe2(SO4)3-type frameworks. J. Power Sources 26, 403–408 (1989).

  36. 36.

    et al. A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure. Nature Mater. 10, 772–779 (2011).

  37. 37.

    , & Lithium-ion batteries: runaway risk of forming toxic compounds. Nature 424, 635–636 (2003).

  38. 38.

    et al. Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry. Energ. Environ. Sci. 5, 5271–5280 (2012).

  39. 39.

    et al. Gas chromatography/mass spectrometry as a suitable tool for the Li-ion battery electrolyte degradation mechanisms study. Anal. Chem. 83, 478–485 (2011).

  40. 40.

    et al. Lithium salt of tetrahydroxybenzoquinone: toward the development of a sustainable Li-ion battery. J. Am. Chem. Soc 131, 8984–8988 (2009).

  41. 41.

    et al. Conjugated dicarboxylate anodes for Li-ion batteries. Nature Mater. 8, 120–125 (2009).

  42. 42.

    et al. Redox cofactor from biological energy transduction as molecularly tunable energy-storage compound. Angew. Chem. Int. Ed. 52, 8322–8328 (2013).

  43. 43.

    et al. Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells. Energ. Environ. Sci. 5, 9632–9638 (2012).

  44. 44.

    et al. All organic sodium-ion batteries with Na4C8H2O6. Angew. Chem. Int. Ed. 126, 6002–6006 (2014).

  45. 45.

    et al. Sodium terephthalate as an organic anode material for sodium ion batteries. Adv. Mater. 24, 3562–3567 (2012).

  46. 46.

    De la solution à l'oxyde (EDP Sciences, 1994).

  47. 47.

    , & Sol-gel chemistry of transition metal oxides. Prog. Solid State Chem. 18, 259–341 (1988).

  48. 48.

    et al. A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. Nature Mater. 9, 68–74 (2010).

  49. 49.

    et al. Understanding and promoting the rapid preparation of the triplite-phase of LiFeSO4F for use as a large-potential Fe cathode. J. Am. Chem. Soc. 134, 18380–18387 (2012).

  50. 50.

    in Microbiology of Extreme Environments (ed. Edwards, C.) 55–92 (McGraw-Hill, 1990).

  51. 51.

    , , & Bacteriogenic mineral plugging. J. Can. Petrol. Technol. 35, 56–61 (1996).

  52. 52.

    , & Microbiological precipitation of CaCO3. Soil Biol. Biochem. 31, 1563–1571 (1999).

  53. 53.

    et al. Experimental approach of CO2 biomineralization in deep saline aquifers. Chem. Geol. 265, 54–62 (2009).

  54. 54.

    , , , & Electrochemical performance of the nanostructured biotemplated V2O5 cathode for lithium-ion batteries. J. Power Sources 206, 282–287 (2012).

  55. 55.

    et al. Virus-enabled silicon anode for lithium-ion batteries. ACS Nano 4, 5366–5372 (2010).

  56. 56.

    Protein engineering with bacterial display. Curr. Opin. Struct. Biol. 17, 474–480 (2007).

  57. 57.

    et al. Biomineralized a-Fe2O3: texturation and electrochemical reaction with Li. Energ. Environ. Sci. 7, 451–460 (2014).

  58. 58.

    , & Sodium carboxymethyl cellulose: a potential binder for Si negative electrodes for Li-ion batteries. Electrochem. Solid State Lett. 10, A17–A20 (2007).

  59. 59.

    et al. Silicon/graphite composite electrodes for high-capacity anodes: influence of binder chemistry on cycling stability. Electrochem. Solid State Lett. 11, A76–A80 (2008).

  60. 60.

    , , & Silicon composite electrode with high capacity and long cycle life. Electrochem. Solid State Lett. 12, A215–A218 (2009).

  61. 61.

    , , , & Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries. Chem. Mater. 22, 1229–1241 (2010).

  62. 62.

    & A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996).

  63. 63.

    Characterization of the lithium/oxygen organic electrolyte battery. J. Electrochem. Soc. 149, A1190–A1195 (2002).

  64. 64.

    , , , & Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128, 1390–1393 (2006).

  65. 65.

    , , & in Proc. Symp. Oxygen Electrochemistry (eds Adzic, R., Anson, F. C. & Kinoshita, K.) Vol. 95–26, 189–196 (The Electrochemical Society, 1995).

  66. 66.

    , , , & An improved high-performance lithium–air battery. Nature Chem. 4, 579–585 (2012).

  67. 67.

    et al. A transmission electron microscopy study of the electrochemical process of lithium–oxygen cells. Nano Lett. 12, 4333–4335 (2012).

  68. 68.

    , , & A reversible and higher-rate Li-O2 battery. Science 337, 563–566 (2012).

  69. 69.

    et al. A stable cathode for the aprotic Li–O2 battery. Nature Mater. 12, 1050–1056 (2013).

  70. 70.

    Electric cell containing amine electrolyte. US patent 3,248,265 (1966).

  71. 71.

    & Electric dry cells and storage batteries. US patent 3,043,896 (1962).

  72. 72.

    & Electrochemistry of a nonaqueous lithium/sulfur cell. J. Power Sources 9, 281–287 (1983).

  73. 73.

    & Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 151, A1969–A1976 (2004).

  74. 74.

    , & A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nature Mater. 8, 500–506 (2009).

  75. 75.

    et al. On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J. Electrochem. Soc. 156, A694–A702 (2009).

  76. 76.

    , , & Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nature Commun. 5, 4759 (2014).

  77. 77.

    et al. A contribution to the progress of high energy batteries: a metal-free, lithium-ion, silicon–sulfur battery. J. Power Sources 202, 308–313 (2012).

  78. 78.

    , , & Li/air non-aqueous batteries. US patent 20070117007 (2007).

  79. 79.

    et al. Aqueous electrolyte lithium sulfur batteries. US patent 8828575 B2 (2014)

  80. 80.

    et al. A lithium superionic conductor. Nature Mater. 10, 682–686 (2011).

  81. 81.

    , , & Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ionics 221, 1–5 (2012).

  82. 82.

    , , & Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nature Commun. 3, 856 (2012).

  83. 83.

    , & Fast Na+-ion transport in skeleton structures. Mater. Res. Bull. 11, 203–220 (1976).

  84. 84.

    Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12. Mater. Res. Bull. 11, 173–182 (1976).

  85. 85.

    et al. Redox flow cells for energy conversion. J. Power Sources 160, 716–732 (2006).

  86. 86.

    , & Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery. J. Power Sources 16, 85–95 (1985).

  87. 87.

    , , , & Batteries for scale stationary electrical energy storage. Electrochem. Soc. Interface 19, 49–53 (2010).

  88. 88.

    & Flow batteries. Electrochem. Soc. Interface 19, 54–56 (2010).

  89. 89.

    , , & High energy density redox flow device. US patent 20100047671 A1 (2010).

  90. 90.

    et al. Semi-solid lithium rechargeable flow battery. Adv. Energ. Mater. 1, 511–516 (2011).

  91. 91.

    , & An all-organic non-aqueous lithium-ion redox flow battery. Adv. Energ. Mater. 2, 1390–1396 (2012).

  92. 92.

    , & Aqueous cathode for next-generation alkali-ion batteries. J. Am. Chem. Soc. 133, 5756–5759 (2011).

  93. 93.

    & Rechargeable alkali-ion cathode-flow battery. J. Mater. Chem. 21, 10113–10117 (2011).

  94. 94.

    et al. Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes. Adv. Energ. Mater. 1, 333–336 (2011).

  95. 95.

    et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 21, 3859–3867 (2011).

  96. 96.

    et al. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl. Mater. Interfaces 3, 4165–4168 (2011).

  97. 97.

    , , , & Parameter analysis of a practical lithium- and sodium-air electric vehicle battery. J. Power Sources 196, 6835–6840 (2011).

  98. 98.

    & Study of the reactivity of Na/hard carbon with different solvents and electrolytes. J. Electrochem. Soc. 159, A515–A519 (2012).

  99. 99.

    & NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes. Electrochem. Solid State Lett. 15, A1–A4 (2011).

  100. 100.

    & The Sodium Sulfur Battery (Chapman & Hall, 1985).

  101. 101.

    Advances in ZEBRA batteries. J. Power Sources 127, 85–92 (2004).

  102. 102.

    NGK Insulators, Ltd, NAS battery fire incident and response. NGK News (28 October 2011); available at

  103. 103.

    et al. Prototype systems for rechargeable magnesium batteries. Nature 407, 724–727 (2000).

  104. 104.

    , , & Electrochemical characteristics of calcium in organic electrolyte solutions and vanadium oxides as calcium hosts. J. Power Sources 119–121, 617–620 (2003).

  105. 105.

    et al. A review of processes and technologies for the recycling of lithium-ion secondary batteries. J. Power Sources 177, 512–527 (2008).

  106. 106.

    & Lithium-bearing slag as aggregate in concrete. Patent application WO/2011/141297 (2011).

  107. 107.

    , , & Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl. Microbiol. Biotechnol. 63, 239–248 (2003).

  108. 108.

    , , , & Elemental sustainability: towards the total recovery of scarce metals. Chem. Eng. Process. 51, 69–78 (2012).

  109. 109.

    Batteries de véhicule électrique: en route pour une seconde vie stationnaire? Rapport d'Ambassade / Consulat Général de France à San-Francisco California (2011); available at

  110. 110.

    & Industrial Applications of Batteries: From Cars to Aerospace and Energy Storage (Elsevier Science, 2007).

  111. 111.

    International Energy Agency Statistics – Electricity Information (IEA, 2012).

  112. 112.

    Ionic liquids in green chemistry. Green Chem. 13, 225 (2011).

  113. 113.

    United Nations 42/187. Report of the World Commission on Environment and Development (General Assembly Resolution 42/187, United Nations, 1987); available at .

Download references

Acknowledgements

We thank members of the European network ALISTORE-ERI and of the French Network Réseau sur le Stockage Electrochimique de l'Energie – RS2E for participating in some discussions related to this topic as well as M. Morcrette, P. Poizot, F. Malbosh and M. Armand for insightful comments. We are also thankful to J. Kurzman, W. Walker, C. Lenfant, C. Colin and C.V. Subban for support in editing the manuscript.

Author information

Affiliations

  1. Laboratoire de Réactivité et Chimie des Solides UPJV, CNRS UMR 7314, 33 rue Saint Leu, 80039 Amiens, France

    • D. Larcher
  2. ALISTORE-European Research Institute, 80039 Amiens, France

    • D. Larcher
    •  & J-M. Tarascon
  3. Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, France

    • D. Larcher
    •  & J-M. Tarascon
  4. Sorbonne Universités UPMC Univ. Paris 06, 4 Place Jussieu, 75252 Paris Cedex 05, France

    • J-M. Tarascon
  5. Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France

    • J-M. Tarascon

Authors

  1. Search for D. Larcher in:

  2. Search for J-M. Tarascon in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to J-M. Tarascon.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nchem.2085