Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards greener and more sustainable batteries for electrical energy storage

This article has been updated

Abstract

Ever-growing energy needs and depleting fossil-fuel resources demand the pursuit of sustainable energy alternatives, including both renewable energy sources and sustainable storage technologies. It is therefore essential to incorporate material abundance, eco-efficient synthetic processes and life-cycle analysis into the design of new electrochemical storage systems. At present, a few existing technologies address these issues, but in each case, fundamental and technological hurdles remain to be overcome. Here we provide an overview of the current state of energy storage from a sustainability perspective. We introduce the notion of sustainability through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability. With the same themes in mind, we also highlight current and future electrochemical storage systems beyond lithium-ion batteries. The complexity and importance of recycling battery materials is also discussed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Past, present and forecast of the world's energy needs up to 2050.
Figure 2: Energy required for the production of a 1 kWh electrochemical storage system.
Figure 3: The CO2 benefit of electric vehicles relies heavily on the origin of the electricity.
Figure 4: Mismatch between the elements constituting biomass and the main constituents of our present Li-ion batteries.
Figure 5: The three-fold benefits in lowering the synthesis temperature of electrode materials.
Figure 6: Recent acceleration in the number of reported electrode materials for sodium-based batteries.

Similar content being viewed by others

Change history

  • 19 November 2014

    In the html version of this Review originally published, the 'Accepted' date was incorrect, and should have read 11 September 2014. The PDF and print versions are correct.

References

  1. Lewis, N. Powering the planet. MRS Bulletin 32, 808–820 (2007).

    Google Scholar 

  2. International Energy Agency Key World Energy Statistics 2011 (IEA, 2011); available at http://www.iea.org/publications/freepublications/publication/key_world_energy_stats-1.pdf.

  3. Arrhenius, S. Conférences sur quelques problèmes actuels de la Chimie Physique et Cosmique (Gauthier-Villars et Cie, 1922).

    Google Scholar 

  4. Anastas, P. T. & Warner, J. C. Green Chemistry: Theory and Practice (Oxford Univ. Press, 1998).

    Google Scholar 

  5. Steele, B. C. H. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345–352 (2001).

    CAS  PubMed  Google Scholar 

  6. Ishihara, K., Kihira, N., Iwahori, T., Terada, N. & Nishimura K. in Proc. 5th Int. Conf. EcoBalance 293–294 (2002).

    Google Scholar 

  7. Sullivan, J. L. & Gaines, L. A Review of Battery Life-Cycle Analysis: State of Knowledge and Critical Needs (Argonne National Laboratory, 2010).

    Google Scholar 

  8. Samaras, C. & Meisterling, K. Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy. Environ. Sci. Technol. 42, 3170–3176 (2008).

    CAS  PubMed  Google Scholar 

  9. Centre d'Analyse stratégique La Voiture de demain: carburants et électricité no. 37 (La Documentation Française, 2011).

  10. International Energy Agency CO2 Emissions from Fuel Combustion 2012 (IEA, 2012); available at www.iea.org/co2highlights/co2highlights.pdf.

  11. International Energy Agency Coal Information 2012 (IEA, 2012); available at www.iea.org/media/training/presentations/statisticsmarch/CoalInformation.pdf.

  12. Notter, D. A. et al. Contribution of Li-ion batteries to the environmental impact of electric vehicles. Environ. Sci. Technol. 44, 6550–6556 (2010).

    CAS  PubMed  Google Scholar 

  13. Kang, D. H. P., Chen, M. & Ogunseitan, O. A. Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste. Environ. Sci. Technol. 47, 5495–5503 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ager-Wick Ellingsen, L. et al. Life cycle assessment of a lithium-ion battery vehicle pack. J. Ind. Ecol. 18, 113–124 (2014).

    Google Scholar 

  15. Dunn, J. B., Gaines, L., Sullivan, J. & Wang, M. Q. Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries. Environ. Sci. Technol. 46, 12704–12710 (2012).

    CAS  PubMed  Google Scholar 

  16. Poizot, P. & Dolhem, F. Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices. Energ. Environ. Sci. 4, 2003–2019 (2011).

    CAS  Google Scholar 

  17. Dewulf, J. et al. Recycling rechargeable lithium ion batteries: critical analysis of natural resource savings. Resour. Conserv. Recy. 54, 229–234 (2010).

    Google Scholar 

  18. Recham, N., Armand, M. & Tarascon, J-M. Novel low temperature approaches for the eco-efficient synthesis of electrode materials for secondary Li-ion batteries. C.R. Chim. 13, 106–116 (2010).

    CAS  Google Scholar 

  19. Tarascon, J-M. et al. Hunting for better Li-based electrode materials via low temperature inorganic synthesis. Chem. Mater. 22, 724–739 (2010).

    CAS  Google Scholar 

  20. Recham, N., Armand, M., Laffont, L. & Tarascon, J-M. Eco-efficient synthesis of LiFePO4 with different morphologies for Li-ion batteries. Electrochem. Solid State Lett. 12, A39–A44 (2009).

    CAS  Google Scholar 

  21. Tarascon, J-M. Viruses electrify battery research. Nature Nanotech. 4, 341–342 (2009).

    CAS  Google Scholar 

  22. Nam, K. T. et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312, 885–888 (2006).

    CAS  PubMed  Google Scholar 

  23. Lee, Y. J. et al. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science 324, 1051–1055 (2009).

    CAS  PubMed  Google Scholar 

  24. Chen, H. et al. From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries. ChemSusChem 1, 348–355 (2008).

    CAS  PubMed  Google Scholar 

  25. Tarascon, J-M. Towards sustainable and renewable systems for electrochemical energy storage. ChemSusChem 1, 777–779 (2008).

    CAS  PubMed  Google Scholar 

  26. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J-M. High energy storage Li-O2 and Li-S batteries. Nature Mater. 11, 19–29 (2011).

    Google Scholar 

  27. Li, Q. & Bjerrum, N. J. Aluminum as anode for energy storage and conversion: a review. J. Power Sources 110, 1–10 (2002).

    CAS  Google Scholar 

  28. Tarascon, J-M. Key challenges in future Li-battery research. Phil. Trans. R. Soc. A 368, 3227–3241 (2010).

    PubMed  Google Scholar 

  29. See, K. A. et al. A high capacity calcium primary cell based on the Ca–S system. Adv. Energ. Mater. 3, 1056–1061 (2013).

    CAS  Google Scholar 

  30. Dunn, B., Kamath, H. & Tarascon, J-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

    CAS  PubMed  Google Scholar 

  31. Claus, C. F. British patent 3608 (1882).

  32. Vassilev, S. V., Baxter, D., Andersen, L. K. & Vassileva, C. G. An overview of the chemical composition of biomass. Fuel 89, 913–933 (2010).

    CAS  Google Scholar 

  33. Ohzuku, T. & Makimura, Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem. Lett. 30, 642–643 (2001).

    Google Scholar 

  34. Thacheray, M. M. et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem. 17, 3112–312 (2007).

    Google Scholar 

  35. Manthiram, A. & Goodenough, J. B. Lithium insertion into Fe2(SO4)3-type frameworks. J. Power Sources 26, 403–408 (1989).

    CAS  Google Scholar 

  36. Barpanda, P. et al. A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure. Nature Mater. 10, 772–779 (2011).

    CAS  Google Scholar 

  37. Hammami, A., Raymond, N. & Armand, M. Lithium-ion batteries: runaway risk of forming toxic compounds. Nature 424, 635–636 (2003).

    CAS  PubMed  Google Scholar 

  38. Ribière, P. et al. Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry. Energ. Environ. Sci. 5, 5271–5280 (2012).

    Google Scholar 

  39. Gachot, G. et al. Gas chromatography/mass spectrometry as a suitable tool for the Li-ion battery electrolyte degradation mechanisms study. Anal. Chem. 83, 478–485 (2011).

    CAS  PubMed  Google Scholar 

  40. Chen, H. et al. Lithium salt of tetrahydroxybenzoquinone: toward the development of a sustainable Li-ion battery. J. Am. Chem. Soc 131, 8984–8988 (2009).

    CAS  PubMed  Google Scholar 

  41. Armand, M. et al. Conjugated dicarboxylate anodes for Li-ion batteries. Nature Mater. 8, 120–125 (2009).

    CAS  Google Scholar 

  42. Lee, M. et al. Redox cofactor from biological energy transduction as molecularly tunable energy-storage compound. Angew. Chem. Int. Ed. 52, 8322–8328 (2013).

    CAS  Google Scholar 

  43. Abouimrane, A. et al. Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells. Energ. Environ. Sci. 5, 9632–9638 (2012).

    CAS  Google Scholar 

  44. Wang, S. et al. All organic sodium-ion batteries with Na4C8H2O6 . Angew. Chem. Int. Ed. 126, 6002–6006 (2014).

    Google Scholar 

  45. Park, Y. et al. Sodium terephthalate as an organic anode material for sodium ion batteries. Adv. Mater. 24, 3562–3567 (2012).

    CAS  PubMed  Google Scholar 

  46. Jolivet, J-P. De la solution à l'oxyde (EDP Sciences, 1994).

    Google Scholar 

  47. Livage, J., Henry, M. & Sanchez, C. Sol-gel chemistry of transition metal oxides. Prog. Solid State Chem. 18, 259–341 (1988).

    CAS  Google Scholar 

  48. Recham, N. et al. A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. Nature Mater. 9, 68–74 (2010).

    CAS  Google Scholar 

  49. Ati, M. et al. Understanding and promoting the rapid preparation of the triplite-phase of LiFeSO4F for use as a large-potential Fe cathode. J. Am. Chem. Soc. 134, 18380–18387 (2012).

    CAS  PubMed  Google Scholar 

  50. Kroll, R. G. in Microbiology of Extreme Environments (ed. Edwards, C.) 55–92 (McGraw-Hill, 1990).

    Google Scholar 

  51. Ferris, F. G., Stehmeier, L. G., Kantzas, A. & Mourits, F. M. Bacteriogenic mineral plugging. J. Can. Petrol. Technol. 35, 56–61 (1996).

    CAS  Google Scholar 

  52. Stocks-Fischer, S., Galinat, J. K. & Bang, S. S. Microbiological precipitation of CaCO3 . Soil Biol. Biochem. 31, 1563–1571 (1999).

    CAS  Google Scholar 

  53. Dupraz, S. et al. Experimental approach of CO2 biomineralization in deep saline aquifers. Chem. Geol. 265, 54–62 (2009).

    CAS  Google Scholar 

  54. Pomerantseva, E., Gerasopoulos, K., Chen, X., Rubloff, G. & Ghodssi, R. Electrochemical performance of the nanostructured biotemplated V2O5 cathode for lithium-ion batteries. J. Power Sources 206, 282–287 (2012).

    CAS  Google Scholar 

  55. Chen, X. et al. Virus-enabled silicon anode for lithium-ion batteries. ACS Nano 4, 5366–5372 (2010).

    CAS  PubMed  Google Scholar 

  56. Daugherty, P. S. Protein engineering with bacterial display. Curr. Opin. Struct. Biol. 17, 474–480 (2007).

    CAS  PubMed  Google Scholar 

  57. Miot, J. et al. Biomineralized a-Fe2O3: texturation and electrochemical reaction with Li. Energ. Environ. Sci. 7, 451–460 (2014).

    CAS  Google Scholar 

  58. Li, J., Lewis, R. B. & Dahn, J. R. Sodium carboxymethyl cellulose: a potential binder for Si negative electrodes for Li-ion batteries. Electrochem. Solid State Lett. 10, A17–A20 (2007).

    CAS  Google Scholar 

  59. Hochgatterer, N. S. et al. Silicon/graphite composite electrodes for high-capacity anodes: influence of binder chemistry on cycling stability. Electrochem. Solid State Lett. 11, A76–A80 (2008).

    CAS  Google Scholar 

  60. Mazouzi, D., Lestriez, B., Roué, L. & Guyomard, D. Silicon composite electrode with high capacity and long cycle life. Electrochem. Solid State Lett. 12, A215–A218 (2009).

    CAS  Google Scholar 

  61. Bride, J-S., Azaïs, T., Morcrette, M., Tarascon, J-M. & Larcher, D. Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries. Chem. Mater. 22, 1229–1241 (2010).

    Google Scholar 

  62. Abraham, K. M. & Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996).

    CAS  Google Scholar 

  63. Read, J. Characterization of the lithium/oxygen organic electrolyte battery. J. Electrochem. Soc. 149, A1190–A1195 (2002).

    CAS  Google Scholar 

  64. Ogasawara, T., Débart, A., Holzapfel, M., Novak, P. & Bruce, P. G. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128, 1390–1393 (2006).

    CAS  PubMed  Google Scholar 

  65. Rudd, E. J., Putt, R., Kinoshita, K. & Song, X. in Proc. Symp. Oxygen Electrochemistry (eds Adzic, R., Anson, F. C. & Kinoshita, K.) Vol. 95–26, 189–196 (The Electrochemical Society, 1995).

    Google Scholar 

  66. Jung, H-G., Hassoun, J., Park, J-B., Sun, Y-K. & Scrosati, B. An improved high-performance lithium–air battery. Nature Chem. 4, 579–585 (2012).

    CAS  Google Scholar 

  67. Jung, H-G. et al. A transmission electron microscopy study of the electrochemical process of lithium–oxygen cells. Nano Lett. 12, 4333–4335 (2012).

    CAS  PubMed  Google Scholar 

  68. Peng, Z., Freunberger, S. A., Chen, Y. & Bruce, P. G. A reversible and higher-rate Li-O2 battery. Science 337, 563–566 (2012).

    CAS  PubMed  Google Scholar 

  69. Ottakam Thotiyl, M. M. et al. A stable cathode for the aprotic Li–O2 battery. Nature Mater. 12, 1050–1056 (2013).

    CAS  Google Scholar 

  70. Herbert, D. Electric cell containing amine electrolyte. US patent 3,248,265 (1966).

  71. Herbert, D. & Ulam, J. Electric dry cells and storage batteries. US patent 3,043,896 (1962).

  72. Yamin, H. & Peled, E. Electrochemistry of a nonaqueous lithium/sulfur cell. J. Power Sources 9, 281–287 (1983).

    CAS  Google Scholar 

  73. Mikhaylik, Y. V. & Akridge, J. R. Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 151, A1969–A1976 (2004).

    CAS  Google Scholar 

  74. Ji, X., Lee K. T. & Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nature Mater. 8, 500–506 (2009).

    CAS  Google Scholar 

  75. Aurbach, D. et al. On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J. Electrochem. Soc. 156, A694–A702 (2009).

    CAS  Google Scholar 

  76. Pang, Q., Kundu, D., Cuisinier, M. & Nazar, L. F. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nature Commun. 5, 4759 (2014).

    CAS  Google Scholar 

  77. Hassoun, J. et al. A contribution to the progress of high energy batteries: a metal-free, lithium-ion, silicon–sulfur battery. J. Power Sources 202, 308–313 (2012).

    CAS  Google Scholar 

  78. Visco, S. J., Katz, B. D., Nimon, Y. S. & De Jonghe, L. C. Li/air non-aqueous batteries. US patent 20070117007 (2007).

  79. Visco, S. J. et al. Aqueous electrolyte lithium sulfur batteries. US patent 8828575 B2 (2014)

  80. Kamaya, N. et al. A lithium superionic conductor. Nature Mater. 10, 682–686 (2011).

    CAS  Google Scholar 

  81. Boulineau, S., Courty, M., Tarascon, J-M. & Viallet, V. Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ionics 221, 1–5 (2012).

    CAS  Google Scholar 

  82. Hayashi, A., Noi, K., Sakuda, A. & Tatsumisago, M. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nature Commun. 3, 856 (2012).

    Google Scholar 

  83. Goodenough, J. B., Hong, H. Y. P. & Kafalas, J. A. Fast Na+-ion transport in skeleton structures. Mater. Res. Bull. 11, 203–220 (1976).

    CAS  Google Scholar 

  84. Hong, H. Y. P. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12 . Mater. Res. Bull. 11, 173–182 (1976).

    CAS  Google Scholar 

  85. Ponce de Leόn, C. et al. Redox flow cells for energy conversion. J. Power Sources 160, 716–732 (2006).

    Google Scholar 

  86. Sum, E., Rychcik, M. & Skyllas-Kazacos, M. Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery. J. Power Sources 16, 85–95 (1985).

    CAS  Google Scholar 

  87. Doughty, D. H., Butler, P. C., Akhil, A. A., Clasrk, N. H. & Boyes, J. D. Batteries for scale stationary electrical energy storage. Electrochem. Soc. Interface 19, 49–53 (2010).

    CAS  Google Scholar 

  88. Nauyen, T. & Savinell, R. F. Flow batteries. Electrochem. Soc. Interface 19, 54–56 (2010).

    Google Scholar 

  89. Chiang, Y. M., Cater, W. C., Ho, B. H. & Duduta, M. High energy density redox flow device. US patent 20100047671 A1 (2010).

  90. Duduta, M. et al. Semi-solid lithium rechargeable flow battery. Adv. Energ. Mater. 1, 511–516 (2011).

    CAS  Google Scholar 

  91. Brushett, F. R., Vaughey, J. T. & Jansen, A. N. An all-organic non-aqueous lithium-ion redox flow battery. Adv. Energ. Mater. 2, 1390–1396 (2012).

    CAS  Google Scholar 

  92. Lu, Y., Goodenough, J. B. & Kim, Y. Aqueous cathode for next-generation alkali-ion batteries. J. Am. Chem. Soc. 133, 5756–5759 (2011).

    CAS  PubMed  Google Scholar 

  93. Lu, Y. & Goodenough, J. B. Rechargeable alkali-ion cathode-flow battery. J. Mater. Chem. 21, 10113–10117 (2011).

    CAS  Google Scholar 

  94. Kim, D. et al. Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes. Adv. Energ. Mater. 1, 333–336 (2011).

    CAS  Google Scholar 

  95. Komaba, S. et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 21, 3859–3867 (2011).

    CAS  Google Scholar 

  96. Komaba, S. et al. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl. Mater. Interfaces 3, 4165–4168 (2011).

    CAS  PubMed  Google Scholar 

  97. Peled, E., Golodnitsky, D., Mazora, H., Goora, M. & Avshalomova, S. Parameter analysis of a practical lithium- and sodium-air electric vehicle battery. J. Power Sources 196, 6835–6840 (2011).

    CAS  Google Scholar 

  98. Xia, X. & Dahn, J. R. Study of the reactivity of Na/hard carbon with different solvents and electrolytes. J. Electrochem. Soc. 159, A515–A519 (2012).

    CAS  Google Scholar 

  99. Xia, X. & Dahn, J. R. NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes. Electrochem. Solid State Lett. 15, A1–A4 (2011).

    Google Scholar 

  100. Sudworth, J. L. & Tilley, A. R. The Sodium Sulfur Battery (Chapman & Hall, 1985).

    Google Scholar 

  101. Dustmann, C. H. Advances in ZEBRA batteries. J. Power Sources 127, 85–92 (2004).

    CAS  Google Scholar 

  102. NGK Insulators, Ltd, NAS battery fire incident and response. NGK News (28 October 2011); available at www.ngk.co.jp/english/news/2011/1028_01.html

  103. Aurbach, D. et al. Prototype systems for rechargeable magnesium batteries. Nature 407, 724–727 (2000).

    CAS  PubMed  Google Scholar 

  104. Hayashi, H., Arai, H., Ohtsuka, H. & Sahurai, Y. Electrochemical characteristics of calcium in organic electrolyte solutions and vanadium oxides as calcium hosts. J. Power Sources 119–121, 617–620 (2003).

    Google Scholar 

  105. Xu, J. et al. A review of processes and technologies for the recycling of lithium-ion secondary batteries. J. Power Sources 177, 512–527 (2008).

    CAS  Google Scholar 

  106. Yaziciogly, B. & Tytgat, J. Lithium-bearing slag as aggregate in concrete. Patent application WO/2011/141297 (2011).

  107. Rohwerder, T., Gehrke, T., Kinzler, K. & Sand, W. Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl. Microbiol. Biotechnol. 63, 239–248 (2003).

    CAS  PubMed  Google Scholar 

  108. Dodson, J. R., Hunt, A. J., Parker, H. L., Yang, Y. & Clark, J. H. Elemental sustainability: towards the total recovery of scarce metals. Chem. Eng. Process. 51, 69–78 (2012).

    CAS  Google Scholar 

  109. Caumon, P. Batteries de véhicule électrique: en route pour une seconde vie stationnaire? Rapport d'Ambassade / Consulat Général de France à San-Francisco California (2011); available at http://www.bulletins-electroniques.com/rapports/smm11_034.htm

    Google Scholar 

  110. Broussely, M. & Pistoia, G. Industrial Applications of Batteries: From Cars to Aerospace and Energy Storage (Elsevier Science, 2007).

    Google Scholar 

  111. International Energy Agency Statistics – Electricity Information (IEA, 2012).

  112. Welton, T. Ionic liquids in green chemistry. Green Chem. 13, 225 (2011).

    CAS  Google Scholar 

  113. United Nations 42/187. Report of the World Commission on Environment and Development (General Assembly Resolution 42/187, United Nations, 1987); available at http://www.un-documents.net/a42r187.htm.

Download references

Acknowledgements

We thank members of the European network ALISTORE-ERI and of the French Network Réseau sur le Stockage Electrochimique de l'Energie – RS2E for participating in some discussions related to this topic as well as M. Morcrette, P. Poizot, F. Malbosh and M. Armand for insightful comments. We are also thankful to J. Kurzman, W. Walker, C. Lenfant, C. Colin and C.V. Subban for support in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J-M. Tarascon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larcher, D., Tarascon, JM. Towards greener and more sustainable batteries for electrical energy storage. Nature Chem 7, 19–29 (2015). https://doi.org/10.1038/nchem.2085

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2085

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing