Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electron transfer through rigid organic molecular wires enhanced by electronic and electron–vibration coupling

Abstract

Electron transfer (ET) is a fundamental process in a wide range of biological systems, photovoltaics and molecular electronics. Therefore to understand the relationship between molecular structure and ET properties is of prime importance. For this purpose, photoinduced ET has been studied extensively using donor–bridge–acceptor molecules, in which π-conjugated molecular wires are employed as bridges. Here, we demonstrate that carbon-bridged oligo-p-phenylenevinylene (COPV), which is both rigid and flat, shows an 840-fold increase in the ET rate compared with the equivalent flexible molecular bridges. A 120-fold rate enhancement is explained in terms of enhanced electronic coupling between the electron donor and the electron acceptor because of effective conjugation through the COPVs. The remainder of the rate enhancement is explained by inelastic electron tunnelling through COPV caused by electron–vibration coupling, unprecedented for organic molecular wires in solution at room temperature. This type of nonlinear effect demonstrates the versatility and potential practical utility of COPVs in molecular device applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of compounds used in this study.
Figure 2: Steady-state spectra and femtosecond flash photolysis in THF at room temperature.
Figure 3: Charge-separated state energies for ZnP•+–COPVn–C60•− and ZnP–COPVn•+–C60•− (n = 1–4) in anisole, THF and benzonitrile.
Figure 4: Arrhenius analyses of CS and CR in argon-saturated benzonitrile.
Figure 5: ET reaction mechanism.

Similar content being viewed by others

References

  1. Carroll, R. L. & Gorman, C. B. The genesis of molecular electronics. Angew. Chem. Int. Ed. 41, 4378–4400 (2002).

    Article  Google Scholar 

  2. Davis, W. B., Ratner, M. A. & Wasielewski, M. R. Conformational gating of long distance electron transfer through wire-like bridges in donor–bridge–acceptor molecules. J. Am. Chem. Soc. 123, 7877–7886 (2001).

    Article  CAS  Google Scholar 

  3. Kobori, Y. et al. Time-resolved EPR characterization of a folded conformation of photoinduced charge-separated state in porphyrin–fullerene dyad bridged by diphenyldisilane. J. Am. Chem. Soc. 131, 1624–1625 (2009).

    Article  CAS  Google Scholar 

  4. Davis, W. B., Svec, W. A., Ratner, M. A. & Wasielewski, M. R. Molecular-wire behavior in p-phenylenevinylene oligomers. Nature 396, 60–63 (1998).

    Article  CAS  Google Scholar 

  5. Weiss, E. A. et al. Making a molecular wire: charge and spin transport through para-phenylene oligomers. J. Am. Chem. Soc. 126, 5577–5584 (2004).

    Article  CAS  Google Scholar 

  6. Goldsmith, R. H. et al. Wire-like charge transport at near constant bridge energy through fluorene oligomers. Proc. Natl Acad. Sci. USA 102, 3540–3545 (2005).

    Article  CAS  Google Scholar 

  7. Zhu, X., Mitsui, C., Tsuji, H. & Nakamura, E. Modular synthesis of 1H-indenes, dihydro-s-indacene, and diindenoindacene—a carbon-bridged p-phenylenevinylene congener. J. Am. Chem. Soc. 131, 13596–13597 (2009).

    Article  CAS  Google Scholar 

  8. Zhu, X., Tsuji, H., Lopéz-Navarrete, T. J., Casado, J. & Nakamura, E. Carbon-bridged oligo(phenylenevinylene)s: stable π-systems with high responsiveness to doping and excitation. J. Am. Chem. Soc. 134, 19254–19259 (2012).

    Article  CAS  Google Scholar 

  9. Zhu, X. et al. New sensitizers for dye-sensitized solar cells featuring a carbon-bridged phenylenevinylene. Chem. Commun. 49, 582–584 (2013).

    Article  CAS  Google Scholar 

  10. Sukegawa, J., Tsuji, H., & Nakamura, E. Large electronic coupling in a homoconjugated donor–acceptor system involving carbon-bridged oligo-p-phenylenevinylene and triazine. Chem. Lett. 43, 699–701 (2014).

    Article  CAS  Google Scholar 

  11. Imahori, H. et al. Synthesis and photophysical property of porphyrin-linked fullerene. Chem. Lett. 24, 265–266 (1995).

    Article  Google Scholar 

  12. Imahori, H. et al. Comparison of reorganization energies for intra- and intermolecular electron transfer. Angew. Chem. Int. Ed. 41, 2344–2347 (2002).

    Article  CAS  Google Scholar 

  13. Guldi, D. M., Illescas, B. M., Atienza, C. M., Wielopolskia, M. & Martín, N. Fullerene for organic electronics. Chem. Soc. Rev. 38, 1587–1597 (2009).

    Article  CAS  Google Scholar 

  14. de la Torre, G., Giacalone, F., Segura, J. L., Martín, N. & Guldi, D. M. Electronic communication through π-conjugated wires in covalently linked porphyrin/C60 ensembles. Chem. Eur. J. 11, 1267–1280 (2005).

    Article  CAS  Google Scholar 

  15. Galperin, M., Ratner, M. A., Nitzan, A. & Troisi, A. Nuclear coupling and polarization in molecular transport junctions: beyond tunneling to function. Science 319, 1056–1060 (2008).

    Article  CAS  Google Scholar 

  16. Blanchet, V., Zgierski, M. Z., Seideman, T. & Stolow, A. Discerning vibronic molecular dynamics using time-resolved photoelectron spectroscopy. Nature 401, 52–54 (1999).

    Article  CAS  Google Scholar 

  17. Imahori, H. et al. Charge separation in a novel artificial photosynthetic reaction center lives 380 ms. J. Am. Chem. Soc. 123, 6617–6628 (2001).

    Article  CAS  Google Scholar 

  18. Leturcq, R. et al. Franck–Condon blockade in suspended carbon nanotube quantum dots. Nature Phys. 5, 327–331 (2009).

    Article  CAS  Google Scholar 

  19. Kushmerick, J. G. et al. Vibronic contributions to charge transport across molecular junctions. Nano Lett. 4, 639–642 (2004).

    Article  CAS  Google Scholar 

  20. Osorio, E. A. et al. Addition energies and vibrational fine structure measured in electromigrated single-molecule junctions based on an oligophenylenevinylene derivative. Adv. Mater. 19, 281–285 (2007).

    Article  CAS  Google Scholar 

  21. Kubatkin, S. et al. Single-electron transistor of a single organic molecule with access to several redox states. Nature 425, 698–701 (2003).

    Article  CAS  Google Scholar 

  22. Osorio, E. A. et al. Electronic excitations of a single molecule contacted in a three-terminal configuration. Nano Lett. 7, 3336–3342 (2007).

    Article  CAS  Google Scholar 

  23. Moth-Poulsen, K. & Bjørnholm, T. Molecular electronics with single molecules in solid-state devices. Nature Nanotechnol. 4, 551–556 (2009).

    Article  CAS  Google Scholar 

  24. Weller, A. Photoinduced electron transfer in solution: exciplex and radical ion pair formation free enthalpies and their solvent dependence. Z. Phys. Chem. 133, 93–98 (1982).

    Article  CAS  Google Scholar 

  25. Marcus, R. A. On the theory of oxidation–reduction involving electron transfer. I. J. Chem. Phys. 24, 966–978 (1956).

    Article  CAS  Google Scholar 

  26. Ricks, A. B. et al. Exponential distance dependence of photoinitiated stepwise electron transfer in donor–bridge–acceptor molecules: implications for wirelike behavior. J. Am. Chem. Soc. 134, 4581–4588 (2012).

    Article  CAS  Google Scholar 

  27. Marcus, R. A. On the theory of electron-transfer reactions. VI. Unified treatment for homogeneous and electrode reactions. J. Chem. Phys. 43, 679–701 (1965).

    Article  CAS  Google Scholar 

  28. Jortner, J. Temperature dependent activation energy for electron transfer between biological molecules. J. Chem. Phys. 64, 4860–4867 (1976).

    Article  CAS  Google Scholar 

  29. Hopfield, J. J. Electron transfer between biological molecules by thermally activated tunneling. Proc. Natl Acad. Sci. USA 71, 3640–3644 (1974).

    Article  CAS  Google Scholar 

  30. Winkler, J. R. & Gray, H. B. Electron transfer in ruthenium-modified proteins. Chem. Rev. 92, 369–379 (1992).

    Article  CAS  Google Scholar 

  31. Osuka, A. et al. Energy-gap dependence of photoinduced charge separation and subsequent charge recombination in 1,4-phenylene-bridged zinc–free-base hybrid porphyrins. Chem. Eur. J. 6, 33–46 (2000).

    Article  CAS  Google Scholar 

  32. Shizu, K., Sato, T. & Tanaka, K. Vibronic coupling density analysis for free-base porphin cation. Chem. Phys. Lett. 505, 42–46 (2011).

    Article  CAS  Google Scholar 

  33. Iwahara, N., Sato, T., Tanaka, K. & Kaji, H. Vibronic couplings in derivatives for organic photovoltaics. Chem. Phys. Lett. 590, 169–174 (2013).

    Article  CAS  Google Scholar 

  34. Gloss, G. L., Calcaterra, L. T., Green, N. J., Penfield, K. W. & Miller, J. R. Distance, stereoelectronic effects, and the Marcus inverted region in intramolecular electron transfer in organic radical anions. J. Phys. Chem. 90, 3673–3683 (1986).

    Article  Google Scholar 

  35. Wiederrecht, G. P., Niemczyk, M. P., Svec, W. A. & Wasielewski, M. R. Ultrafast photoinduced electron transfer in a chlorophyll-based triad: vibrationally hot ion pair intermediates and dynamic solvent effects. J. Am. Chem. Soc. 118, 81–88 (1996).

    Article  CAS  Google Scholar 

  36. Koch, M. et al. Real-time observation of the formation of excited radical ions in bimolecular photoinduced charge separation: absence of the Marcus inverted region explained. J. Am. Chem. Soc. 135, 9843–9848 (2013).

    Article  CAS  Google Scholar 

  37. Sato, T. in et al. The Jahn–Teller Effect: Fundamentals and Implications for Physics and Chemistry (eds Koeppel, H., Yarkony, D. R. & Barentzen, H.) 99–131 (Springer, 2010).

    Google Scholar 

  38. Shizu, K., Sato, T., Tanaka, K. & Kaji, H. Electron–vibration interactions in triphenylamine cation: why are triphenylamine-based molecules good hole-transport materials? Chem. Phys. Lett. 486, 130–136 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Specially Promoted Research Grant (KAKENHI 22000008 to E.N.) and by JST-PRESTO ‘New Materials Science and Element Strategy’ (for H.T.). This work was supported by Deutsche Forschungsgemeinschaft as part of the Excellence Cluster ‘Engineering of Advanced Materials’. We thank R. D. Costa for calculations and valuable comments.

Author information

Authors and Affiliations

Authors

Contributions

J.S. carried out molecular design, synthesis and data analysis, X.Z. carried out synthesis, H.T. and E.N. provided the system design and data analysis, C.S. carried out spectral data collection and analysis, and D.M.G. designed the spectral experiments and data analysis. All authors contributed equally to the preparation of the manuscript.

Corresponding authors

Correspondence to Hayato Tsuji, Dirk M. Guldi or Eiichi Nakamura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 9407 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukegawa, J., Schubert, C., Zhu, X. et al. Electron transfer through rigid organic molecular wires enhanced by electronic and electron–vibration coupling. Nature Chem 6, 899–905 (2014). https://doi.org/10.1038/nchem.2026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2026

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing