Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Irreversible xenon insertion into a small-pore zeolite at moderate pressures and temperatures

Abstract

Pressure drastically alters the chemical and physical properties of materials and allows structural phase transitions and chemical reactions to occur that defy much of our understanding gained under ambient conditions. Particularly exciting is the high-pressure chemistry of xenon, which is known to react with hydrogen and ice at high pressures and form stable compounds. Here, we show that Ag16Al16Si24O8·16H2O (Ag-natrolite) irreversibly inserts xenon into its micropores at 1.7 GPa and 250 °C, while Ag+ is reduced to metallic Ag and possibly oxidized to Ag2+. In contrast to krypton, xenon is retained within the pores of this zeolite after pressure release and requires heat to desorb. This irreversible insertion and trapping of xenon in Ag-natrolite under moderate conditions sheds new light on chemical reactions that could account for the xenon deficiency relative to argon observed in terrestrial and Martian atmospheres.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pressure- and heat-induced changes in the synchrotron XRD patterns measured for Ag-NAT using Xe as a pressure-transmitting medium.
Figure 2: Heat-induced changes observed in XRD patterns and XRF spectra of recovered Ag-NAT·Xe.
Figure 3: Graphical representations to illustrate the pressure- and temperature-induced sequential conversions of Ag-NAT to Ag-NAT·Xe and to the Xe-desorbed and rehydrated Ag-NAT.
Figure 4: HAADF-STEM image of Ag-NAT·Xe after pressure release and comparison of the derivatives of the EPR absorption spectra from Ag-NAT, Ag-NAT·Xe and Xe-desorbed Ag-NAT.

Similar content being viewed by others

References

  1. Bartlett, N. Xenon hexafluoroplatinate(V) Xe+[PtF6]. Proc. Chem. Soc. 218 (June, 1962).

  2. Grochala, W. Atypical compounds of gases, which have been called 'noble'. Chem. Soc. Rev. 36, 1632–1655 (2007).

    Article  CAS  Google Scholar 

  3. Zhang, W. et al. Unexpected stable stoichiometries of sodium chlorides. Science 342, 1502–1505 (2013).

    Article  CAS  Google Scholar 

  4. Grochala, W., Hoffmann, R., Feng, J. & Ashcroft, N. W. The chemical imagination at work in very tight places. Angew. Chem. Int. Ed. 46, 3620–3642 (2007).

    Article  CAS  Google Scholar 

  5. Somayazulu, M. et al. Pressure-induced bonding and compound formation in xenon–hydrogen solids. Nature Chem. 2, 50–53 (2010).

    Article  CAS  Google Scholar 

  6. Sanloup, C., Bonev, S. A., Hochlaf, M. & Maynard-Casely, H. E. Reactivity of xenon with ice at planetary conditions. Phys. Rev. Lett. 110, 265501 (2013).

    Article  Google Scholar 

  7. Miao, M. Xe anions in stable Mg–Xe compounds: the mechanism of missing Xe in Earth atmosphere. Preprint at http://arxiv.org/abs/1309.0696 (2013).

  8. Anders, E. & Owen, T. Mars and Earth: origin and abundance of volatiles. Science 198, 453–465 (1977).

    Article  CAS  Google Scholar 

  9. Shcheka, S. S. & Keppler, H. The origin of the terrestrial noble-gas signature. Nature 490, 531–534 (2012).

    Article  CAS  Google Scholar 

  10. Staudacher, T. & Allègre, C. J. Recycling of oceanic crust and sediments: the noble gas subduction barrier. Earth Planet. Sci. Lett. 89, 173–183 (1988).

    Article  CAS  Google Scholar 

  11. Holland, G. & Ballentine, C. J. Seawater subduction controls the heavy noble gas composition of the mantle. Nature 441, 186–191 (2006).

    Article  CAS  Google Scholar 

  12. Barrer, R. M. & Ruzicka, D. J. Non-stoichiometric clathrate compounds of water. Part 2. Formation and properties of double hydrates. Trans. Faraday Soc. 58, 2239–2252 (1962).

    Article  CAS  Google Scholar 

  13. Dyadin, Y. A. et al. Phase diagram of the Xe–H2O system up to 15 kbar. J. Inclus. Phenom. Mol. 28, 271–285 (1997).

    Article  CAS  Google Scholar 

  14. Heo, N. H. et al. Crystal structures of encapsulates within zeolites. 3. Xenon in zeolite A. J. Phys. Chem. B 103, 1881–1889 (1999).

    Article  CAS  Google Scholar 

  15. Ito, T. & Fraissard, J. 129Xe NMR study of xenon adsorbed on Y zeolites. J. Chem. Phys. 76, 5225–5229 (1981).

    Article  Google Scholar 

  16. Sanloup, C., Hemley, R. J. & Mao, H. K. Evidence for xenon silicates at high pressure and temperature. Geophys. Res. Lett. 29, 30–31 (2002).

    Article  Google Scholar 

  17. Sanloup, C. et al. Retention of xenon in quartz and Earth's missing xenon. Science 310, 1174–1177 (2005).

    Article  CAS  Google Scholar 

  18. Zhu, Q. et al. Stability of xenon oxides at high pressures. Nature Chem. 5, 61–65 (2013).

    Article  Google Scholar 

  19. Barrer, R. M. & Papadopoulos, R. The sorption of krypton and xenon in zeolites at high pressures and temperatures. I. Chabazite. Proc. R. Soc. Lond. A 326, 315–330 (1972).

    Article  CAS  Google Scholar 

  20. Barrer, R. M., Papadopoulos, R. & Ramsay, J. D. F. The sorption of krypton and xenon in zeolites at high pressures and temperatures. II. Comparison and analysis. Proc. R. Soc. Lond. A 326, 331–345 (1972).

    Article  CAS  Google Scholar 

  21. Munakata, K., Kanjo, S., Yamatsuki, S., Koga, A. & Ianovski, D. Adsorption of noble gases on silver-mordenite. J. Nucl. Sci. Technol. 40, 695–697 (2003).

    Article  CAS  Google Scholar 

  22. Kuznicki, S. M. et al. Xenon adsorption on modified ETS-10. J. Phys. Chem. C 111, 1560–1562 (2007).

    Article  CAS  Google Scholar 

  23. Daniel, C. et al. Xenon capture on silver-loaded zeolites: characterization of very strong adsorption sites. J. Phys. Chem. C 117, 15122–15129 (2013).

    Article  CAS  Google Scholar 

  24. Nguyen, H. G., Konya, G., Eyring, E. M., Hunter, D. B. & Truong, T. N. Theoretical study on the interaction between xenon and positively charged silver clusters in gas phase and on the (001) chabazite surface. J. Phys. Chem. C 113, 12818–12825 (2009)

    Article  CAS  Google Scholar 

  25. Seoung, D., Lee, Y., Lee, Y., Kao, C. C. & Vogt, T. Super-hydrated zeolites: pressure-induced hydration in natrolites. Chem. Eur. J. 19, 10876–10883 (2013).

    Article  CAS  Google Scholar 

  26. Lee, Y., Hriljac, J. A. & Vogt, T. Pressure-induced argon insertion into an auxetic small pore zeolite. J. Phys. Chem. C 114, 6922–6927 (2010).

    Article  CAS  Google Scholar 

  27. Kuznicki, S. M. et al. Metal nanodots formed and supported on chabazite and chabazite-like surfaces. Micropor. Mesopor. Mater. 103, 309–315 (2007).

    Article  CAS  Google Scholar 

  28. Sasaki, Y. & Suzuki, T. Formation of Ag clusters by electron beam irradiation of Ag-zeolites. Mater. Trans. 50, 1050–1053 (2009).

    Article  CAS  Google Scholar 

  29. Talebi, J., Halladj, R. & Askari, S. Sonochemical synthesis of silver nanoparticles in Y-zeolite substrate. J. Mater. Sci. 45, 3318–3324 (2010).

    Article  CAS  Google Scholar 

  30. Lee, Y., Seoung, D., Jang, Y. N., Vogt, T. & Lee, Y. Pressure-induced hydration and insertion of CO2 into Ag-natrolite. Chem. Eur. J. 19, 5806–5811 (2013).

    Article  CAS  Google Scholar 

  31. Jacobs, P. A., Uytterhoeven, J. B., Beyer, H. K. & Kiss, A. Preparation and properties of hydrogen form of stilbite, heulandite and clinoptilolite zeolites. J. Chem. Soc. Faraday Trans. I 75, 883–891 (1979).

    Article  CAS  Google Scholar 

  32. Tsutsumi, K. & Takahashi, H. The formation of metallic silver in silver-form zeolite. J. Chem. Soc. Jpn 45, 2332–2337 (1972).

    Article  CAS  Google Scholar 

  33. Kestner, M. O. & Allred, A. L. Ligand-induced disproportionation of silver(I). J. Am. Chem. Soc. 94, 7189–7190 (1972).

    Article  CAS  Google Scholar 

  34. Grochala, W. Beyond fluorides: extension of chemistry of divalent silver to oxo ligands. Inorg. Chem. Commun. 11, 155–158 (2008).

    Article  CAS  Google Scholar 

  35. Zilbermann, I. et al. Electroprecipitation of Ag(II)/Ag(III) tetraphenylsulfonate porphyrin and electrocatalytic behavior of the films. Electrochem. Commun. 4, 862–865 (2002).

    Article  CAS  Google Scholar 

  36. Kunkely, H. & Vogler, A. Generation of nitric oxide by photolysis of silver hyponitrite in suspension induced by LMCT excitation. Inorg. Chem. Commun. 10, 1294–1296 (2007).

    Article  CAS  Google Scholar 

  37. Sun, D. et al. Synthesis, characterization and property of a mixed-valent Ag(I)/Ag(II) coordination polymer. Chem. Commun. 46, 8168–8170 (2010).

    Article  CAS  Google Scholar 

  38. Kanzaki, N. & Yasumori, I. Electron spin resonance studies of the Ag2+ ion produced in Ag–X zeolite by γ irradiation. J. Phys. Chem. 82, 2351–2352 (1978).

    Article  CAS  Google Scholar 

  39. Abragam, A. & Bleaney, B. Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, 1970).

    Google Scholar 

  40. Kurzydłowski, D. & Grochala, W. Xenon as a mediator of chemical reactions? Case of elusive gold monofluoride, AuF, and its adduct with xenon, XeAuF. Z. Anorg. Allg. Chem. 634, 1082–1086 (2008).

    Article  Google Scholar 

  41. Kramida, A., Ralchenko, Y. & Reader, J. NIST Atomic Spectra Database (National Institute of Standard and Technology, 2013).

    Google Scholar 

  42. Walker, N. R., Wright, R. R. & Stace, A. J. Stable Ag(II) coordination complexes in the gas phase. J. Am. Chem. Soc. 121, 4837–4844 (1999).

    Article  CAS  Google Scholar 

  43. Lee, Y., Seoung, D. & Lee, Y. Natrolite is not a 'soda-stone' anymore: structural study of alkali (Li+), alkaline-earth (Ca2+, Sr2+, Ba2+) and heavy metal (Cd2+, Pb2+, Ag+) cation-exchanged natrolites. Am. Mineral. 96, 1718–1724 (2011).

    Article  CAS  Google Scholar 

  44. Toby, B. H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001).

    Article  CAS  Google Scholar 

  45. Thompson, P., Cox, D. E. & Hastings, J. B. Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3 . J. Appl. Crystallogr. 20, 79–83 (1987).

    Article  CAS  Google Scholar 

  46. Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Global Research Laboratory Program of the Korean Ministry of Science, ICT and Planning (MSIP) and was performed under the auspices of the US Department of Energy (contracts W-7405-Eng-48 and DE-AC52-07NA27344). Experiments using the synchrotron were supported by MSIP's PAL-XFEL project. A portion of this work was performed at HPCAT (Sector 16), the Advanced Photon Source (APS), Argonne National Laboratory. HPCAT operations were supported by the DOE-NNSA (under award no. DE-NA0001974) and the DOE-BES (under award no. DE-FG02-99ER45775), with partial instrumentation funding by the National Science Foundation. The APS is supported by the DOE-BES (under contract no. DE-AC02-06CH11357). K.C. acknowledges financial support from the National Research Foundation of Korea (NRF, grant no. 2009-0093817).

Author information

Authors and Affiliations

Authors

Contributions

Y.L. and T.V. designed the research and edited and wrote the paper. D.S. and Y.L. performed the HPXRD experiments and structure analyses. H.C. and C.P. engineered the experiments at APS. D.B. and K.C. carried out the HAADF-STEM and EPR measurements, respectively. W.E. and C.K. discussed the results with Y.L.

Corresponding author

Correspondence to Yongjae Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 893 kb)

Supplementary information

Crystallographic data for compound Ag-NAT (CIF 80 kb)

Supplementary information

Crystallographic data for compound Ag-Nat.Xe (CIF 43 kb)

Supplementary information

Crystallographic data for compound Ag-NAT (recovered by heating Ag-NAT.Xe to 95°C) (CIF 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seoung, D., Lee, Y., Cynn, H. et al. Irreversible xenon insertion into a small-pore zeolite at moderate pressures and temperatures. Nature Chem 6, 835–839 (2014). https://doi.org/10.1038/nchem.1997

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1997

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing