Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A two-coordinate boron cation featuring C–B+–C bonding

Abstract

Two-coordinate boron cations (R2B+), referred to as borinium ions, are chemical species in which the boron bears only four valence electrons, and that are isoelectronic with hypothetical carbon dications (R2C2+). Although lone-pair-donating substituents such as amino groups have enabled the isolation of several borinium ions, diarylated and dialkylated borinium derivatives remain entirely unexplored. Here, we present the synthesis, structure and reactivity of the dimesitylborinium ion, which displays unexpectedly high thermal stability. X-ray crystallography and 11B NMR spectroscopy, supported by density functional theory calculations, reveal that the borinium ion adopts a linear two-coordinate structure in both the solid state and in solution. The boron centre is stabilized by pπ bonding from the mesityl groups and is free from coordination by the counterion or solvent molecules. This diarylborinium ion possesses exceptional Lewis acidity, accepting a pair of electrons from CO2 to cause an unusual deoxygenation reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representations of chemical compounds.
Figure 2: Crystal structures of 1a and 1b (50% probability ellipsoids).
Figure 3: DFT calculation of Mes2B+ at the M06-2X/6-31+G(d) level.
Figure 4: Energy diagram of the arylation–deoxygenation of CO2 with Mes2B+ to form MesC≡O+ at the PCM(o-dichlorobenzene)-M06-2X/6-311+G(d,p)//M06-2X/6-31+G(d) level.

Similar content being viewed by others

References

  1. Suzuki, A. Cross-coupling reactions of organoboranes: an easy way to construct C–C bonds (Nobel Lecture). Angew. Chem. Int. Ed. 50, 6723–6737 (2011).

    Google Scholar 

  2. Brown, H. C. Hydroboration (W. A. Benjamin, 1962).

    Google Scholar 

  3. Shinkai, S. & Takeuchi, M. Molecular design of synthetic receptors with dynamic, imprinting, and allosteric functions. Bull. Chem. Soc. Jpn 78, 40–51 (2005).

    Article  CAS  Google Scholar 

  4. Mastalerz, M. The next generation of shape-persistent zeolite analogues: covalent organic frameworks. Angew. Chem. Int. Ed. 47, 445–447 (2008).

    Article  CAS  Google Scholar 

  5. Wade, C. R., Broomsgrove, A. E. J., Aldridge, S. & Gabbaï, F. P. Fluoride ion complexation and sensing using organoboron compounds. Chem. Rev. 110, 3958–3984 (2010).

    Article  CAS  Google Scholar 

  6. Lipscomb, W. N. Boron Hydrides (W. A. Benjamin, 1963).

    Google Scholar 

  7. Moezzi, A., Olmstead, M. M. & Power, P. P. Boron–boron double bonding in the species [B2R4]2: synthesis and structure of [{(Et2O)Li}2{Mes2BB(Mes)Ph}], a diborane(4) dianion analog of a substituted ethylene. J. Am. Chem. Soc. 114, 2715–2717 (1992).

    Article  CAS  Google Scholar 

  8. Segawa, S., Yamashita, M. & Nozaki, K. Boryllithium: isolation, characterization, and reactivity as a boryl anion. Science 314, 113–115 (2006).

    Article  CAS  Google Scholar 

  9. Wang, Y. et al. A stable neutral diborene containing a BB double bond. J. Am. Chem. Soc. 129, 12412–12413 (2007).

    Article  CAS  Google Scholar 

  10. Shoji, Y. et al. A stable doubly hydrogen-bridged butterfly-shaped diborane(4) compound. J. Am. Chem. Soc. 132, 8258–8260 (2010).

    Article  CAS  Google Scholar 

  11. Kinjo, R., Donnadieu, B., Celik, M. A., Frenking, G. & Bertrand, G. Synthesis and characterization of a neutral tricoordinate organoboron isoelectronic with amines. Science 333, 610–613 (2011).

    Article  CAS  Google Scholar 

  12. Braunschweig, H. et al. Ambient-temperature isolation of a compound with a boron–boron triple bond. Science 336, 1420–1422 (2012).

    Article  CAS  Google Scholar 

  13. Hübner, A. et al. Confirmation of an early postulate: B–C–B two-electron–three-center bonding in organo(hydro)boranes. Angew. Chem. Int. Ed. 51, 12514–12518 (2012).

    Article  Google Scholar 

  14. Braunschweig, H., Damme, A., Dewhurst, R. D. & Vargas, A. Bond-strengthening π backdonation in a transition-metal π-diborene complex. Nature Chem. 5, 115–121 (2013).

    Article  CAS  Google Scholar 

  15. Kölle, P. & Nöth, H. The chemistry of borinium and borenium ions. Chem. Rev. 85, 399–418 (1985).

    Article  Google Scholar 

  16. Piers, W. E., Bourke, S. C. & Conroy, K. D. Borinium, borenium, and boronium ions: synthesis, reactivity, and applications. Angew. Chem. Int. Ed. 44, 5016–5036 (2005).

    Article  CAS  Google Scholar 

  17. Chiu, C-W. & Gabbaï, F. P. Diarylborenium cations: synthesis, structure, and electrochemistry. Organometallics 27, 1657–1659 (2008).

    Article  CAS  Google Scholar 

  18. Matsumoto, T. & Gabbaï, F. P. A borenium cation stabilized by an N-heterocyclic carbene ligand. Organometallics 28, 4252–4253 (2009).

    Article  CAS  Google Scholar 

  19. Osberghaus, O. Die isotopenhäiufigkeit des bors. Massenspektrometrische untersuchung der elektronenstoßprodukte von BF3 und BCI3 . Z. Phys. 128, 366–377 (1950).

    Article  CAS  Google Scholar 

  20. Law, R. W. & Margrave, J. L. Mass spectrometer appearance potentials for positive ion fragments from BF3, B(CH3)3, B(C2H5)3, B(OCH3)3, and HB(OCH3)2 . J. Chem. Phys. 25, 1086–1087 (1956).

    Article  CAS  Google Scholar 

  21. Davidson, J. M. & French, C. M. The existence of an organic cation containing boron. J. Chem. Soc. 114–117 (1958).

  22. Moodie, R. B. Ellul, B. & Connor, T. M. Evidence for the structure of boronium ions from proton magnetic resonance and conductivity measurements. Chem. Ind. 767–768 (1966).

  23. Uddin, M. K., Fujiyama, R., Kiyooka, S., Fujio, M. & Tsuno, Y. Preparation and characterization of diphenylboron cation in solution. Tetrahedron Lett. 45, 3913–3916 (2004).

    Article  CAS  Google Scholar 

  24. Nöth, H., Staudigl, R. & Wagner, H-U. Contributions to the chemistry of boron. 121. Dicoordinate amidoboron cations. Inorg. Chem. 21, 706–716 (1982).

    Article  Google Scholar 

  25. Higashi, J., Eastman, A. D. & Parry, R. W. Synthesis and characterization of salts of the bis(diisopropylamido)boron(III) cation and attempted reactions to make the corresponding bis(dimethylamido)boron(III) cation. Inorg. Chem. 21, 716–720 (1982).

    Article  CAS  Google Scholar 

  26. Courtenay, S., Mutus, J. Y., Schurko, R. W. & Stephan, D. W. The extended borinium cation: [(tBu3PN)2B]+. Angew. Chem. Int. Ed. 41, 498–501 (2002).

    Article  CAS  Google Scholar 

  27. Reed, C. A. H+, CH3+, and R3Si+ carborane reagents: when triflates fail. Acc. Chem. Res. 43, 121–128 (2010).

    Article  CAS  Google Scholar 

  28. Körbe, S., Schreiber, P. J. & Michl, J. Chemistry of the carba-closo-dodecaborate(–) anion, CB11H12. Chem. Rev. 106, 5208–5249 (2006).

    Article  Google Scholar 

  29. Kim, K-C. et al. Crystallographic evidence for a free silylium ion. Science 297, 825–827 (2002).

    Article  CAS  Google Scholar 

  30. Mantina, M., Chamberlin, A. C., Valero, R., Cramer, C. J. & Truhlar, D. G. Consistent van der Waals radii for the whole main group. J. Phys. Chem. A 113, 5806–5812 (2009).

    Article  CAS  Google Scholar 

  31. Olmstead, M. M., Power, P. P., Weese, K. J. & Doedens, R. J. Isolation and X-ray crystal structure of the boron methylidenide ion [Mes2BCH2] (Mes=2,4,6-Me3C6H2): a boron–carbon double bonded alkene analog. J. Am. Chem. Soc. 109, 2541–2542 (1987).

    Article  CAS  Google Scholar 

  32. Lambert, J. B., Zhang, S., Stern, C. L. & Huffman, J. C. Crystal structure of a silyl cation with no coordination to anion and distant coordination to solvent. Science 260, 1917–1918 (1993).

    Article  CAS  Google Scholar 

  33. Davlieva, M. G., Lindeman, S. V., Neretin, I. S. & Kochi, J. K. Structural effects of carbon monoxide coordination to carbon centres. π and σ bindings in aliphatic acyl versus aromatic aroyl cations. New J. Chem. 28, 1568–1574 (2004).

    Article  CAS  Google Scholar 

  34. Pachaly, B. & West, R. Synthesis of a 1,3-dioxa-2,4-diboretane, an oxoborane precursor. J. Am. Chem. Soc. 107, 2987–2988 (1985).

    Article  CAS  Google Scholar 

  35. De Vries, T. S., Prokofjevs, A. & Vedejs, E. Cationic tricoordinate boron intermediates: borenium chemistry from the organic perspective. Chem. Rev. 112, 4246–4282 (2012).

    Article  CAS  Google Scholar 

  36. Braunschweig, H. et al. Controlled homocatenation of boron on a transition metal. Nature Chem. 5, 563–567 (2013).

    Google Scholar 

  37. Braunschweig, H. et al. Metal-free binding and coupling of carbon monoxide at a boron–boron triple bond. Nature Chem. 5, 1025–1028 (2013).

    Article  CAS  Google Scholar 

  38. Litters, S., Kaifer, E., Enders, M. & Himmel, H-J. A boron–boron coupling reaction between two ethyl cation analogues. Nature Chem. 5, 1029–1034 (2013).

    Article  CAS  Google Scholar 

  39. Eisch, J. J., Shafii, B., Odom, J. D. & Rheingold, A. L. Aromatic stabilization of the triarylborirene ring system by tricoordinate boron and facile ring opening with tetracoordinate boron. J. Am. Chem. Soc. 112, 1847–1853 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by KAKENHI (22750046). The authors thank C.A. Reed for his instruction regarding carboranes synthesis and valuable discussions. RIKEN Integrated Cluster of Clusters (RICC) provided the computer resources for the DFT calculations.

Author information

Authors and Affiliations

Authors

Contributions

Y.S. and T.F. conceived and designed the work. Y.S. and N.T. performed the experiments. Y.S., N.T. and T.F. analysed the experimental data. K.M. and M.U. performed the DFT calculations and analysed the computational data. Y.S., M.U. and T.F. co-wrote the paper.

Corresponding author

Correspondence to Yoshiaki Shoji.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 8874 kb)

Supplementary information

Crystallographic data for compound 1a (CIF 57 kb)

Supplementary information

Crystallographic data for compound 1b (CIF 18 kb)

Supplementary information

rystallographic data for compound 2a (CIF 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoji, Y., Tanaka, N., Mikami, K. et al. A two-coordinate boron cation featuring C–B+–C bonding. Nature Chem 6, 498–503 (2014). https://doi.org/10.1038/nchem.1948

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1948

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing