Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Colloidal inverse bicontinuous cubic membranes of block copolymers with tunable surface functional groups

Abstract

Analogous to the complex membranes found in cellular organelles, such as the endoplasmic reticulum, the inverse cubic mesophases of lipids and their colloidal forms (cubosomes) possess internal networks of water channels arranged in crystalline order, which provide a unique nanospace for membrane-protein crystallization and guest encapsulation. Polymeric analogues of cubosomes formed by the direct self-assembly of block copolymers in solution could provide new polymeric mesoporous materials with a three-dimensionally organized internal maze of large water channels. Here we report the self-assembly of amphiphilic dendritic–linear block copolymers into polymer cubosomes in aqueous solution. The presence of precisely defined bulky dendritic blocks drives the block copolymers to form spontaneously highly curved bilayers in aqueous solution. This results in the formation of colloidal inverse bicontinuous cubic mesophases. The internal networks of water channels provide a high surface area with tunable surface functional groups that can serve as anchoring points for large guests such as proteins and enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structures and schematic diagrams of dendritic–linear block copolymers and their self-assembly.
Figure 2: Representative SEM and TEM images of the polymer cubosomes.
Figure 3: Structural analysis of the polymer cubosomes.
Figure 4: Polymer cubosomes of 3223.
Figure 5: Surface-functionalized polymer cubosomes.
Figure 6: Surface-functionalized polymer cubosomes.

Similar content being viewed by others

References

  1. Israelachivili, J. N. Intermolecular and Surface Forces (Academic Press, 1992).

    Google Scholar 

  2. Zhang, L. & Eisenberg, A. Multiple morphologies of “crew-cut” aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science 268, 1728–1731 (1995).

    CAS  PubMed  Google Scholar 

  3. Zhang, L., Bartels, C., Yu, Y., Shen, H. & Eisenberg, A. Mesosized crystal-like structure of hexagonally packed hollow hoops by solution self-assembly of diblock copolymers. Phys. Rev. Lett. 79, 5034–5037 (1997).

    CAS  Google Scholar 

  4. Yu, K., Bartels, C. & Eisenberg, A. Trapping of intermediate structures of the morphological transition of vesicles to inverted hexagonally packed rods in dilute solutions of PS-b-PEO. Langmuir 15, 7157–7167 (1999).

    CAS  Google Scholar 

  5. Mai, Y. & Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 41, 5969–5985 (2012).

    CAS  PubMed  Google Scholar 

  6. Schacher, F. H., Rupar, P. A. & Manners, I. Functional block copolymers: nanostructured materials with emerging applications. Angew. Chem. Int. Ed. 51, 7898–7921 (2012).

    CAS  Google Scholar 

  7. Moffit, M., Khougaz, K. & Eisenberg, A. Micellization of ionic block copolymers. Acc. Chem. Res. 29, 95–102 (1996).

    Google Scholar 

  8. Hales, K., Chen, Z., Wooley, K. L. & Pochan, D. J. Nanoparticles with tunable internal structure from triblock copolymers of PAA-b-PMA-b-PS. Nano Lett. 8, 2023–2026 (2008).

    CAS  PubMed  Google Scholar 

  9. Cui, H., Chen, Z., Zhong, S., Wooley, K. L. & Pochan, D. J. Block copolymer assembly via kinetic control. Science 317, 647–650 (2007).

    CAS  PubMed  Google Scholar 

  10. Li, Z., Kesselman, E., Talmon, Y., Hillmyer, M. A. & Lodge, T. P. Multicompartment micelles from ABC Miktoarm stars in water. Science 306, 98–101 (2004).

    CAS  PubMed  Google Scholar 

  11. Christian, D. A. et al. Spotted vesicles, striped micelles and Janus assemblies induced by ligand binding. Nature Mater. 8, 843–849 (2009).

    CAS  Google Scholar 

  12. Wang, X. et al. Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science 317, 644–647 (2007).

    CAS  PubMed  Google Scholar 

  13. Jackson, E. A. & Hillmyer, M. A. Nanoporous membranes derived from block copolymers: from drug delivery to water filtration. ACS Nano 4, 3548–3553 (2010).

    CAS  PubMed  Google Scholar 

  14. Seo, M. & Hillmyer, M. A. Reticulated nanoporous polymers by controlled polymerization-induced microphase separation. Science 336, 1422–1425 (2012).

    CAS  PubMed  Google Scholar 

  15. Peinemann, K-V., Abetz, V. & Simon, P. F. W. Asymmetric superstructure formed in a block copolymer via phase separation. Nature Mater. 6, 992–996 (2007).

    CAS  Google Scholar 

  16. Larsson, K. Cubic lipid–water phases: structures and biomembrane aspects. J. Phys. Chem. 93, 7304–7314 (1989).

    CAS  Google Scholar 

  17. Kulkarni, C. V., Wachter, W., Iglesias-Salto, G., Engelskirchen, S. & Ahualli, S. Monoolein: a magic lipid? Phys. Chem. Chem. Phys. 13, 3004–3021 (2011).

    CAS  PubMed  Google Scholar 

  18. Almsherqi, Z. A., Kohlwein, S. D. & Deng, Y. Cubic membranes: a legend beyond the Flatland of cell membrane organization. J. Cell Biol. 173, 839–844 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lindström, M., Ljusberg-Wahren, H. & Larsson, K. Aqueous lipid phases of relevance to intestinal fat digestion and absorption. Lipids 16, 749–754 (1981).

    PubMed  Google Scholar 

  20. van Meer, G., Voelker, D. R. & Freigenson, G. W. Membrane lipids: where they are and how they behave. Nature Rev. Mol. Cell Biol. 9, 112–124 (2008).

    CAS  Google Scholar 

  21. Gustafsson, J., Ljusberg-Wahren, H., Almgren, M. & Larsson, K. Cubic lipid–water phase dispersed into submicron particles. Langmuir 12, 4611–4613 (1996).

    CAS  Google Scholar 

  22. Spicer, P. T. in Dekker Encyclopedia of Nanoscience and Nanotechnology (eds Schwarz, J. A., Contescu, C. & Putyera, K.) 881–892 (Marcel Dekker, 2004).

    Google Scholar 

  23. Landau, E. M. & Rosenbusch, J. P. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc. Natl Acad. Sci. USA 93, 14532–14535 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Caffrey, M. Crystallizing membrane proteins for structure determination: use of lipidic mesophases. Ann. Rev. Biophys. 38, 29–51 (2009).

    CAS  Google Scholar 

  25. Angelova, A., Angelov, B., Papahadjopoulos-Sternberg, B., Ollivon, M. & Bourgaux, C. Proteocubosomes: nanoporous vehicles with tertiary organized fluid interfaces. Langmuir 21, 4138–4143 (2005).

    CAS  PubMed  Google Scholar 

  26. Spicer, P. T. Progress in liquid crystalline dispersions: cubosomes. Curr. Opin. Colloid Interfac. Sci. 10, 274–279 (2005).

    CAS  Google Scholar 

  27. Battaglia, G. & Ryan, A. J. Effect of amphiphile size on the transformation from a lyotropic gel to a vesicular dispersion. Macromolecules 39, 798–805 (2006).

    CAS  Google Scholar 

  28. Battaglia, G. & Ryan, A. J. The evolution of vesicles from bulk lamellar gels. Nature Mater. 4, 869–876 (2005).

    CAS  Google Scholar 

  29. Jain, S., Gong, X., Scriven, L. E. & Bates, F. S. Disordered network state in hydrated block-copolymer surfactants. Phys. Rev. Lett. 96, 138304 (2006).

    PubMed  Google Scholar 

  30. Alexandridis, P., Olsson, U. & Lindman, B. Structural polymorphism of amphiphilic copolymers: six lyotropic liquid crystalline and two solution phases in a poly(oxybutylene)-b-poly(oxyethylene)–water–xylene system. Langmuir 13, 23–34 (1997).

    CAS  Google Scholar 

  31. Percec, V. et al. Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architectures. Science 328, 1009–1014 (2010).

    CAS  PubMed  Google Scholar 

  32. McKenzie, B. E., Nudelman, F., Bomans, P. H. H., Holder, S. J. & Sommerdijk, N. A. J. M. Temperature-responsive nanospheres with bicontinuous internal structures from a semicrystalline amphiphilic block copolymer. J. Am. Chem. Soc. 132, 10256–10259 (2010).

    CAS  PubMed  Google Scholar 

  33. Parry, A. L., Bomans, P. H. H., Holder, S. J., Sommerdijk, N. A. J. M. & Biagini, S. C. G. Cryo electron tomography reveals confined complex morphologies of tripeptide-containing amphiphilic double-comb diblock copolymers. Angew. Chem. Int. Ed. 47, 8859–8862 (2008).

    CAS  Google Scholar 

  34. Dehsorkhi, A., Castelletto, V., Hamley, I. W. & Harris, P. J. F. Multiple hydrogen bonds induce formation of nanoparticles with internal microemulsion structure by an amphiphilic copolymer. Soft Matter 7, 10116–10121 (2011).

    CAS  Google Scholar 

  35. Denkova, A. G., Bomans, P. H. H., Coppens, M-O., Sommerdijk, N. A. J. M. & Mendes, E. Complex morphologies of self-assembled block copolymer micelles in binary solvent mixtures: the role of solvent–solvent correlations. Soft Matter 7, 6622–6628 (2011).

    CAS  Google Scholar 

  36. McKenzie, B. E., Holder, S. J. & Sommerdijk, N. A. J. M. Assessing internal structure of polymer assemblies from 2D to 3D cryoTEM: bicontinuous micelles. Curr. Opin. Colloid Interface Sci. 17, 343–349 (2012).

    Google Scholar 

  37. Jeong, M. G., van Hest, J. C. M. & Kim, K. T. Self-assembly of dendritic–linear block copolymers with fixed molecular weight and block ratio. Chem. Commun. 48, 3590–3592 (2012).

    CAS  Google Scholar 

  38. Kim, K. T. et al. Polymersome stomatocytes: controlled shape transformation of polymer vesicles. J. Am. Chem. Soc. 132, 12522–12524 (2010).

    CAS  PubMed  Google Scholar 

  39. Almgren, M., Edwards, K. & Karlsson, G. Cryo transmission electron microscopy of liposomes and related structures. Colloid Surf. A 174, 3–21 (2000).

    CAS  Google Scholar 

  40. Kulkarni, C. V. et al. Engineering bicontinuous cubic structures at the nanoscale—the role of chain splay. Soft Matter 6, 3191–3194 (2010).

    CAS  Google Scholar 

  41. Georgieva, J. V. et al. Peptide-mediated blood–brain barrier transport of polymersomes. Angew. Chem. Int. Ed. 51, 8339–8342 (2012).

    CAS  Google Scholar 

  42. Ikemoto, H., Chi, Q. & Ulstrup, J. Stability and catalytic kinetics of horseradish peroxidase confined in nanoporous SBA-15. J. Phys. Chem. C 114, 16174–16180 (2010).

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation (NRF) of Korea (NRF-2013R1A1A013075) and Ulsan National Institute of Science and Technology (2012 Future Challenge Research Fund, 1.130014). C.P. acknowledges the NRF for a research fellowship (2013R1A1A2063049): S.H.J. and S.K. thank NRF for financial support (2013R1A1A2012960, ARC 2010-0028684). K.T.K also thanks KUCC for financial support (2V03280). We thank the Unist Central Research Facilities and the Unist-Olympus Biomed Imaging Center for microscopy facilities. We thank J. Y. Cheon and Y. J. Kang for the help with adsorption experiments and protein labelling. We also thank M. G. Jeong for the graphical illustrations.

Author information

Authors and Affiliations

Authors

Contributions

K.T.K. conceived and designed the experiments. Y.L. carried out most of the experiments, C.P. performed the experiments on surface functionalization and T.J.S. conducted SAXS experiments. S.H. Joo and S.K. carried out porosimetry and protein labelling. All the authors contributed to the analysis and interpretation of the data. K.T.K. wrote the manuscript. All the authors commented on the manuscript.

Corresponding author

Correspondence to Kyoung Taek Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 11736 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La, Y., Park, C., Shin, T. et al. Colloidal inverse bicontinuous cubic membranes of block copolymers with tunable surface functional groups. Nature Chem 6, 534–541 (2014). https://doi.org/10.1038/nchem.1946

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1946

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing