Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Calculations predict a stable molecular crystal of N8

Abstract

Nitrogen, one of the most abundant elements in nature, forms the highly stable N2 molecule in its elemental state. In contrast, polynitrogen compounds comprising only nitrogen atoms are rare, and no molecular crystal made of these compounds has been prepared. Here, we predict the existence of such a molecular solid, consisting of N8 molecules, that is metastable even at ambient pressure. In the solid state, the N8 monomers retain the same structure and bonding pattern as those they adopt in the gas phase. The interactions that bind N8 molecules together are weak van der Waals and electrostatic forces. The solid is, according to calculations, more stable than a previously reported polymeric nitrogen solid, including at low pressure (below 20 GPa). The structure and properties of the N8 molecular crystal are discussed and a possible preparation strategy is suggested.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of the predicted N8 solid and bonding pattern in N8 molecules.
Figure 2: Structures and HOMOs of the components of the solid.
Figure 3: Thermodynamic stability of different forms of solid nitrogen.
Figure 4: Relevant energies (ΔHG, in kcal mol−1) of the N8 isomers and the barriers for decomposition (from ref. 10).
Figure 5: Calculated infrared spectrum of N8 molecular solid and normal modes corresponding to the most intense transitions.

Similar content being viewed by others

References

  1. Vij, A. et al. Experimental detection of the pentaazacyclopentadienide (pentazolate) anion, cyclo-N5. Angew. Chem. Int. Ed. 114, 3177–3180 (2002).

    Article  Google Scholar 

  2. Cacace, F., de Patris, G. & Troiani, A. Experimental detection of tetranitrogen. Science 295, 480–481 (2002).

    Article  CAS  Google Scholar 

  3. Ostmark, H. et al. Detection of pentazolate anion (cyclo-N5) from laser ionization and decomposition of solid p-dimethylaminophenylpentazole. Chem. Phys. Lett. 379, 539–546 (2003).

    Article  CAS  Google Scholar 

  4. Samartzis, P. C. et al. Two photoionization thresholds of N3 produced by ClN3 photodissociation at 248 nm: further evidence for cyclic N3. J. Chem. Phys. 123, 051101 (2005).

    Article  Google Scholar 

  5. Hansen, N. et al. Photofragment translation spectroscopy of ClN3 at 248 nm: determination of the primary and secondary dissociation pathways. J. Chem. Phys. 123, 104305 (2005).

    Article  CAS  Google Scholar 

  6. Christe, K. O., Wilson, W. W., Sheehy, J. A. & Boatz, J. A. N5+: a novel homoleptic polynitrogen ion as a high energy density material. Angew. Chem. Int. Ed. 38, 2004–2009 (1999).

    Article  CAS  Google Scholar 

  7. Haiges, R., Schneider, S., Schroer, T. & Christe, K. O. High energy density materials. Synthesis and characterization of N5+P(N3)6, N5+B(N3)4, N5+HF2nHF, N5+BF4, N5+PF6 and N5+SO3F. Angew. Chem. Int. Ed. 43, 4919–4924 (2004).

    Article  CAS  Google Scholar 

  8. Lauderdale, W. J., Stanton, J. F. & Bartlett, R. J. Stability and energetics of metastable molecules: tetraazatetrahedrane (N4 ), hexaazabenzene (N6 ), and octaazacubane (N8). J. Phys. Chem. 96, 1173–1178 (1992).

    Article  CAS  Google Scholar 

  9. Bartlett, R. J. Exploding the mysteries of nitrogen. Chem. Ind. 4, 140–143 (2000).

    Google Scholar 

  10. Fau, S. & Bartlett, R. J. Possible products of the end-on addition of N3 to N5+ and their stability. J. Phys. Chem. A 105, 4096–4106 (2001).

    Article  CAS  Google Scholar 

  11. Fau, S., Wilson, K. J. & Bartlett, R. J. On the stability of N5+N5. J. Phys. Chem. A 106, 4639–4644 (2002).

    Article  CAS  Google Scholar 

  12. Nguyen, M. T. Polynitrogen compounds. 1. Structure and stability of N4 and N5 systems. Coord. Chem. Rev. 244, 93–113 (2003).

    Article  CAS  Google Scholar 

  13. Hirshberg, B. & Gerber, R. B. Decomposition mechanisms and dynamics of N6: bond orders and partial charges along classical trajectories. Chem. Phys. Lett. 531, 46–51 (2012).

    Article  CAS  Google Scholar 

  14. Mailhiot, C., Yang, L. H. & McMahan, A. K. Polymeric nitrogen. Phys. Rev. B 46, 14419–14435 (1992).

    Article  CAS  Google Scholar 

  15. Mattson, W. D., Sanchez-Portal, D., Chiesa, S. & Martin, R. M. Prediction of new phases of nitrogen at high pressure from first-principles simulations. Phys. Rev. Lett. 93, 125501 (2004).

    Article  Google Scholar 

  16. Wang, X., Tian, F., Wang, L., Cui, T. & Liu, B. Structural stability of polymeric nitrogen: a first-principles investigation. J. Chem. Phys. 132, 024502 (2010).

    Article  Google Scholar 

  17. McMahan, A. K. & LeSar, R. Pressure dissociation of solid nitrogen under 1 Mbar. Phys. Rev. Lett. 54, 1929–1932 (1985).

    Article  CAS  Google Scholar 

  18. Eremets, M. I., Gavriliuk, A. G., Tro jan, I. A., Dzivenko, D. A. & Boehler, R. Single-bonded cubic form of nitrogen. Nature Mater. 3, 558–563 (2004).

    Article  CAS  Google Scholar 

  19. Eremets, M. I., Hemley, R. J., Mao, H. & Gregoryanz, E. Semiconducting non-molecular nitrogen up to 240 GPa and its low-pressure stability. Nature 411, 170–174 (2001).

    Article  CAS  Google Scholar 

  20. Gerber, R. B. Formation of novel rare-gas molecules in low temperature matrices. Annu. Rev. Phys. Chem. 55, 55–78 (2004).

    Article  CAS  Google Scholar 

  21. Sheng, L. & Gerber, R. B. Predicted stability and structure of (HXeCCH)n (n = 2 or 4) clusters and of crystalline HXeCCH. J. Chem. Phys. 126, 021108 (2007).

    Article  Google Scholar 

  22. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  23. Grimme, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 25, 1463–1473 (2004).

    Article  CAS  Google Scholar 

  24. Dion, M., Rydberg, H., Schröder, E., Langreth, D. C. & Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004).

    Article  CAS  Google Scholar 

  25. Giannozzi, P. et al. Quantum Espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. 21, 395502 (2009).

    Google Scholar 

  26. Chai, J-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion interactions. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

    Article  CAS  Google Scholar 

  27. Shao, Y. et al. Advances in methods and algorithms in a modern quantum chemistry program package. Phys. Chem. Chem. Phys. 8, 3172–3191 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research at the Hebrew University of Jerusalem was supported under the auspices of the Saerree K. and Louis P. Fiedler Chair in Chemistry (R.B.G.). A.I.K. acknowledges support from the Army Research Office (grant W911NF-12-1-0543). B.H. and R.B.G. wishes to thank S. Aflalo for her help with the artwork for the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

B.H. performed the calculations. A.I.K. provided advice on electronic structure calculations. R.B.G. proposed the research topic. B.H., A.I.K. and R.B.G. contributed to the interpretation of the results and co-wrote the manuscript.

Corresponding author

Correspondence to R. Benny Gerber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1049 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirshberg, B., Gerber, R. & Krylov, A. Calculations predict a stable molecular crystal of N8. Nature Chem 6, 52–56 (2014). https://doi.org/10.1038/nchem.1818

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1818

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing