Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A pentagonal cyanostar macrocycle with cyanostilbene CH donors binds anions and forms dialkylphosphate [3]rotaxanes

Abstract

Since the discovery of crown ethers, macrocycles have been recognized as powerful platforms for supramolecular chemistry. Although their numbers and variations are now legion, macrocycles that are simple to make using high-yielding reactions in one pot and on the multigram scale are rare. Here we present such a discovery obtained during the creation of a C5-symmetric cyanostilbene ‘campestarene’ macrocycle, cyanostar, that employs Knoevenagel condensations in the preparation of its cyanostilbene repeat unit. In the solid state, cyanostars form π-stacked dimers constituted of chiral P and M enantiomers. The electropositive central cavity stabilizes anions with CH hydrogen-bonding units that are activated by electron-withdrawing cyano groups. In solution, the cyanostar shows high-affinity binding as 2:1 sandwich complexes, log β2 ≈ 12 and ΔG ≈ −70 kJ mol−1, of large anions (BF4, ClO4 and PF6) usually considered weakly coordinating. The cyanostar's size preference allowed formation of an unprecedented [3]rotaxane templated around a dialkylphosphate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cyanostar (CS), a cyanostilbene-based macrocycle with five-fold symmetry.
Figure 2: Stereoisomers and WMD in the crystal structure.
Figure 3: Anion binding selectivity of cyanostars.
Figure 4: NMR spectroscopic characterization of anion complexes.
Figure 5: Formation and characterization of phosphate-templated [3]rotaxanes.

Similar content being viewed by others

References

  1. Pedersen, C. J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89, 2495–2496 (1967).

    Article  CAS  Google Scholar 

  2. de Silva, A. P. et al. Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515–1566 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Cram, D. J. & Sogah, G. D. Y. Chiral crown complexes catalyse Michael addition reactions to give adducts in high optical yields. J. Chem. Soc. Chem. Commun. 625–628 (1981).

  4. Ma, D. et al. Acyclic cucurbit[n]uril molecular containers enhance the solubility and bioactivity of poorly soluble pharmaceuticals. Nature Chem. 4, 503–510 (2012).

    Article  CAS  Google Scholar 

  5. Stoddart, J. F. The chemistry of the mechanical bond. Chem. Soc. Rev. 38, 1802–1820 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    Article  CAS  Google Scholar 

  7. Höger, S. Shape-persistent phenylene–acetylene macrocycles: large rings–low yield? Angew. Chem. Int. Ed. 44, 3806–3808 (2005).

    Article  CAS  Google Scholar 

  8. Busch, D. H. The significance of complexes of macrocyclic ligands and their synthesis by ligand reactions. Rec. Chem. Progr. 25, 107–126 (1964).

    CAS  Google Scholar 

  9. Ogoshi, T., Kanai, S., Fujinami, S., Yamagishi, T. & Nakamoto, Y. para-Bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host–guest property. J. Am. Chem. Soc. 130, 5022–5023 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Yuan, L. H. et al. Highly efficient, one-step macrocyclizations assisted by the folding and preorganization of precursor oligomers. J. Am. Chem. Soc. 126, 11120–11121 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, W. & Moore, J. S. Arylene ethynylene macrocycles prepared by precipitation-driven alkyne metathesis. J. Am. Chem. Soc., 126, 12796 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Hua, Y. & Flood, A. H. Click chemistry generates privileged CH hydrogen-bonding triazoles: the latest addition to anion supramolecular chemistry. Chem. Soc. Rev. 39, 1262–1271 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Bryantsev, V. S. & Hay, B. P. Are C–H groups significant hydrogen bonding sites in anion receptors? Benzene complexes with Cl, NO3, and ClO4. J. Am. Chem. Soc. 127, 8282–8283 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Li, Y. & Flood, A. H. Pure C–H hydrogen bonding to chloride ions: a preorganized and rigid macrocyclic receptor. Angew. Chem. Int. Ed. 47, 2649–2652 (2008).

    Article  CAS  Google Scholar 

  15. Sessler, J. L. et al. A pyrrolyl-based triazolophane: a macrocyclic receptor with CH and NH donor groups that exhibits a preference for pyrophosphate anions. J. Am. Chem. Soc. 132, 14058–14060 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tinant, B. et al. Structural study of stilbenes. 2. Crystal-structure redetermination of trans-4′-dimethylamino-4-nitro-α-cyanostilbene C17H15N3O2 . Bull. Soc. Chim. Belg. 92, 403–404 (1983).

    Article  CAS  Google Scholar 

  17. Yu, G. & Heeger, A. J. Charge separation and photovoltaic conversion in polymer composites with internal donor–acceptor heterojunctions. J. Appl. Phys. 78, 4510–4515 (1995).

    Article  CAS  Google Scholar 

  18. An, B-K., Kwon, S-K., Jung, S-D. & Park, S. Y. Enhanced emission and its switching in fluorescent organic nanoparticles. J. Am. Chem. Soc. 124, 14410–14415 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Rosenthal, M. R. The myth of the non-coordinating anion. J. Chem. Educ. 50, 331–335 (1973).

    Article  CAS  Google Scholar 

  20. Yuan, L. et al. Highly efficient, one-step macrocyclizations assisted by the folding and preorganization of precursor oligomers. J. Am. Chem. Soc. 126, 11120–11121 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Qin, B. et al. Crystallographic evidence of an unusual, pentagon-shaped folding pattern in a circular aromatic pentamer. Org. Lett. 10, 5127–5130 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Guieu, S., Crane, A. K. & MacLachlan, M. J. Campestarenes: novel shape-persistent Schiff base macrocycles. Chem. Commun. 47, 1169–1171 (2011).

    Article  CAS  Google Scholar 

  23. Zhang, J., Pesak, D. J., Ludwick, J. L. & Moore, J. S. Geometrically-controlled and site-specifically-functionalized phenylacetylene macrocycles. J. Am. Chem. Soc. 116, 4227–4239 (1994).

    Article  CAS  Google Scholar 

  24. Du, Z. et al. BOP-mediated one-pot synthesis of C5-symmetric macrocyclic pyridone pentamers. Chem. Commun. 47, 12488–12490 (2011).

    Article  CAS  Google Scholar 

  25. Qin, B. et al. Persistently folded circular aromatic amide pentamers containing modularly tunable cation-binding cavities with high ion selectivity. J. Am. Chem. Soc. 132, 9564–9566 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Ren, C. et al. Crystallographic realization of the mathematically predicted densest all-pentagon packing lattice by C5-symmetric ‘sticky’ fluoropentamers. Angew. Chem. Int. Ed. 50, 10612–10615 (2011).

    Article  CAS  Google Scholar 

  27. Ren, C., Xu, S., Xu, J., Chen, H. & Zeng, H. Planar macrocyclic fluoropentamers as supramolecular organogelators. Org. Lett. 13, 3840–3843 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Tahara, K., Balandina, T., Furukawa, S., De Feyter, S. & Tobe, Y. Molecular pentagonal tiling: self-assemblies of pentagonal-shaped macrocycles at liquid/solid interfaces. CrystEngComm 13, 5551–5558 (2011).

    Article  CAS  Google Scholar 

  29. Alcalde, E., Ayala, C., Dinarès, I. & Mesquida, N. Polynucleating open-chain systems with imidazole and proton-ionizable 1,2,4-triazole structural motifs. J. Org. Chem. 66, 2291–2295 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Dürer, A. Treatise on Mensuration with the Compass and Ruler in Lines, Planes, and Whole Bodies (Dürer, 1525).

    Google Scholar 

  31. Caspar, D. L. D. & Fontano, E. Five-fold symmetry in crystalline quasicrystal lattices. Proc. Natl Acad. Sci. USA 93, 14271–14278 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Bandera, D., Baldridge, K. K., Linden, A., Dorta, R. & Siegel, J. S. Stereoselective coordination of C5-symmetric corannulene derivatives with an enantiomerically pure [RhI(nbd*)] metal complex. Angew. Chem. Int. Ed. 50, 865–867 (2011).

    Article  CAS  Google Scholar 

  33. Hanson, J. C. & Nordman, C. E. The crystal and molecular structure of corannulene, C20H10 . Acta Cryst. B 32, 1147–1153 (1976).

    Article  Google Scholar 

  34. Li, Y., Pink, M., Karty, J. A. & Flood, A. H. Dipole-promoted and size-dependent cooperativity between pyridyl-containing triazolophanes and halides leads to persistent sandwich complexes with iodide. J. Am. Chem. Soc. 130, 17293–17295 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Szumna, A. Inherently chiral concave molecules – from synthesis to applications. Chem. Soc. Rev. 39, 4274–4285 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Brak, K. & Jacobsen, E. N. Asymmetric ion-pairing catalysis. Angew. Chem. Int. Ed. 52, 534–561 (2013).

    Article  CAS  Google Scholar 

  37. Greer, M. A., Goodman, G., Pleus, R. C. & Greer, S. E. Health effects assessment for environmental perchlorate contamination: the dose response for inhibition of thyroidal radioiodine uptake in humans. Environ. Health Persp. 110, 927–937 (2002).

    Article  CAS  Google Scholar 

  38. Etacheri, V., Marom, R., Elazari, R., Salitra, G. & Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011).

    Article  CAS  Google Scholar 

  39. Hristova, Y. R., Smulders, M. M. J., Clegg, J. K., Breiner, B. & Nitschke, J. R. Selective anion binding by a ‘chameleon’ capsule with a dynamically reconfigurable exterior. Chem. Sci. 2, 638–641 (2011).

    Article  CAS  Google Scholar 

  40. Hayashida, O., Shivanyuk, A. & Rebek, J. Jr Molecular encapsulation of anions in a neutral receptor. Angew. Chem. Int. Ed. 41, 3423–3426 (2002).

    Article  CAS  Google Scholar 

  41. Roobottom, H. K., Jenkins, H. D. B., Passmore, J. & Glasser, L. Thermochemical radii of complex ions. J. Chem. Educ. 76, 1570–1573 (1999).

    Article  CAS  Google Scholar 

  42. Gibb, C. L. D. & Gibb, B. C. Anion binding to hydrophobic concavity is central to the salting-in effects of Hofmeister chaotropes. J. Am. Chem. Soc. 133, 7344–7347 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hübner, G. M., Gläser, J., Seel, C. & Vögtle, F. High-yielding rotaxane synthesis with an anion template. Angew. Chem. Int. Ed. 38, 383–386 (1999).

    Article  Google Scholar 

  44. Keaveney, C. M. & Leigh, D. A. Shuttling through anion recognition. Angew. Chem. Int. Ed. 43, 1222–1224 (2004).

    Article  CAS  Google Scholar 

  45. Brouwer, A. M. et al. Photoinduction of fast, reversible translational motion in a hydrogen-bonded molecular shuttle. Science 291, 2124–2128 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Ghosh, P., Mermagen, O. & Schalley, C. A. Novel template effect for the preparation of [2]rotaxanes with functionalized centre pieces. Chem. Commun. 2628–2629 (2002).

  47. Lee, C. F. et al. Hybrid organic–inorganic rotaxanes and molecular shuttles. Nature 458, 314–318 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Wisner, J. A., Beer, P. D., Drew, M. G. B. & Sambrook, M. R. Anion-templated rotaxane formation. J. Am. Chem. Soc. 124, 12469–12476 (2002)

    Article  CAS  PubMed  Google Scholar 

  49. Ashton, P. R. et al. Self-assembling [2]- and [3]rotaxanes from secondary dialkylammonium salts and crown ethers. Chem. Eur. J. 2, 729–736 (1996).

    Article  CAS  Google Scholar 

  50. Katayev, E. A., Ustynyuk, Y. A. & Sessler, J. L. Receptors for tetrahedral oxyanions. Coord. Chem. Rev. 250, 3004–3037 (2006).

    Article  CAS  Google Scholar 

  51. Craig, M. R., Claridge, T. D. W., Hutchings, M. G. & Anderson, H. L. Synthesis of a cyclodextrin azo dye [3]rotaxane as a single isomer. Chem. Commun. 1537–1538 (1999).

  52. Talotta, C., Gaeta, C., Pierro, T. & Neri, P. Sequence stereoisomerism in calixarene-based pseudo[3]rotaxanes. Org. Lett. 13, 2098–2101 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Vander Griend, D. A., Bediako, D. K., DeVries, M. J., DeJong, N. A. & Heeringa, L. P. Detailed spectroscopic, thermodynamic, and kinetic characterization of nickel(II) complexes with 2,2′-bipyridine and 1,10-phenanthroline attained via equilibrium-restricted factor analysis. Inorg. Chem. 47, 656–662 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Science Foundation (NSF/CHE-0844441) for financial support. S.L. thanks the Raymond Siedle Fellowship in Materials Chemistry. Crystal data were recorded using ChemMatCARS Sector 15, principally supported by the NSF and Department of Energy under grant number NSF/CHE-0822838. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

S.L. conceived this project, and designed and conducted the syntheses and experiments. C-H.C. conducted the crystallographic study. S.L. and A.H.F. contributed to the data analysis and co-wrote the paper.

Corresponding author

Correspondence to Amar H. Flood.

Ethics declarations

Competing interests

A provisional US patent application has been filed.

Supplementary information

Supplementary information

Supplementary information (PDF 6289 kb)

Supplementary information

Crystallographic data for compound CS. (CIF 73 kb)

Supplementary information

Crystallographic data for compound 3TBA. (CIF 161 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Chen, CH. & Flood, A. A pentagonal cyanostar macrocycle with cyanostilbene CH donors binds anions and forms dialkylphosphate [3]rotaxanes. Nature Chem 5, 704–710 (2013). https://doi.org/10.1038/nchem.1668

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1668

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing