Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption

Abstract

The development of hydrogen-based energy sources as viable alternatives to fossil-fuel technologies has revolutionized clean energy production using fuel cells. However, to date, the slow rate of the hydrogen oxidation reaction (HOR) in alkaline environments has hindered advances in alkaline fuel cell systems. Here, we address this by studying the trends in the activity of the HOR in alkaline environments. We demonstrate that it can be enhanced more than fivefold compared to state-of-the-art platinum catalysts. The maximum activity is found for materials (Ir and Pt0.1Ru0.9) with an optimal balance between the active sites that are required for the adsorption/dissociation of H2 and for the adsorption of hydroxyl species (OHad). We propose that the more oxophilic sites on Ir (defects) and PtRu material (Ru atoms) electrodes facilitate the adsorption of OHad species. Those then react with the hydrogen intermediates (Had) that are adsorbed on more noble surface sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Determining the role of OH on the HOR in alkaline solutions.
Figure 2: Determining the role of OHad–metal energetics on the rate of HOR in alkaline solutions.
Figure 3: Bifunctional catalysts for the HOR in alkaline solution.

Similar content being viewed by others

References

  1. Parsons, R. The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans. Faraday Soc. 54, 1053–1063 (1958).

    Article  CAS  Google Scholar 

  2. Gerischer, H. Mechanism of electrolytic discharge of hydrogen and adsorption energy of atomic hydrogen. Bull. Soc. Chim. Belg. 67, 506 (1958).

  3. Conway, B. E. & Bockris, J. O. M. Electrolytic hydrogen evolution kinetics and its relation to the electronic and adsorptive properties of the metal. J. Chem. Phys. 26, 532–542 (1957).

    Article  CAS  Google Scholar 

  4. Trasatti, S. Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. 39, 163–184 (1972).

    Article  CAS  Google Scholar 

  5. Norskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nature Chem. 1, 37–46 (2009).

    Article  CAS  Google Scholar 

  6. Breiter, M. W. in Handbook of Fuel Cells (eds. Vielstich, W., Lamm, A. & Gasteiger, H.) 361–368 (Wiley, 2010).

    Google Scholar 

  7. Schmickler, W. & Santos, E. in Interfacial Electrochemistry 163–175 (Springer, 2010).

    Book  Google Scholar 

  8. Wolfschmidt, H., Paschos, O. & Stimming, U. in Fuel Cell Science: Theory, Fundamentals, and Biocatalysis (eds Wieckowski, A. & Nørskov, J. K.) 1–70 (Wiley, 2010).

    Book  Google Scholar 

  9. Conway, B. E. in Interfacial Electrochemistry: Theory, Experiment, and Applications (ed. Wieckowski, A.) 131–150 (CRC Press, 1999).

    Google Scholar 

  10. Savadogo, O. in Interfacial Electrochemistry: Theory, Experiment, and Applications (ed. Wieckowski, A.) 937–954 (CRC Press, 1999).

    Google Scholar 

  11. Subbaraman, R. et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+–Ni(OH)2–Pt interfaces. Science 334, 1256–1260 (2011).

    Article  CAS  Google Scholar 

  12. Conway, B. E. & Tilak, B. V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta 47, 3571–3594 (2002).

    Article  CAS  Google Scholar 

  13. Greeley, J. & Markovic, N. M. The road from animal electricity to green energy: combining experiment and theory in electrocatalysis. Energy Environ. Sci. 5, 9246–9256 (2012).

    CAS  Google Scholar 

  14. Petrii, O. A. & Tsirlina, G. A. Electrocatalytic activity prediction for hydrogen electrode reaction: intuition, art, science. Electrochim. Acta 39, 1739–1747 (1994).

    Article  CAS  Google Scholar 

  15. Markovic, N. M., Sarraf, S. T., Gasteiger, H. A. & Ross, P. N. Hydrogen electrochemistry on platinum low-index single-crystal surfaces in alkaline solution. J. Chem. Soc. Faraday Trans. 92, 3719–3725 (1996).

    Article  CAS  Google Scholar 

  16. Markovic, N. M., Grgur, B. N. & Ross, P. N. Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions. J. Phys. Chem. B 101, 5405–5413 (1997).

    Article  CAS  Google Scholar 

  17. Sheng, W., Gasteiger, H. A. & Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J. Electrochem. Soc. 157, B1529–B1536 (2010).

    Article  CAS  Google Scholar 

  18. Barber, J. H. & Conway, B. E. Structural specificity of the kinetics of the hydrogen evolution reaction on the low-index surfaces of Pt single-crystal electrodes in 0.5 M dm−3 NaOH. J. Electroanal. Chem. 461, 80–89 (1999).

    Article  CAS  Google Scholar 

  19. Schmidt, T. J., Ross, P. N. & Markovic, N. M. Temperature dependent surface electrochemistry on Pt single crystals in alkaline electrolytes: Part 2. The hydrogen evolution/oxidation reaction. J. Electroanal. Chem. 524, 252–260 (2002).

    Article  Google Scholar 

  20. Subbaraman, R. et al. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nature Mater. 11, 550–557 (2012).

    Article  CAS  Google Scholar 

  21. Danilovic, N. et al. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew. Chem. Int. Ed. 124, 12663–12666 (2012).

    Article  Google Scholar 

  22. Auinger, M. et al. Near-surface ion distribution and buffer effects during electrochemical reactions. Phys. Chem. Chem. Phys. 13, 16384–16394 (2011).

    Article  CAS  Google Scholar 

  23. Angerstein-Kozlowska, H., Conway, B. E. & Hamelin, A. Electrocatalytic mediation of oxidation of H2 at gold by chemisorbed states of anions. J. Electroanal. Chem. 277, 233–252 (1990).

    Article  CAS  Google Scholar 

  24. Marković, N. M. & Ross, P. N. Jr. Surface science studies of model fuel cell electrocatalysts. Surf. Sci. 45, 117–229 (2002).

    Article  Google Scholar 

  25. Strmcnik, D. et al. The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nature Chem. 1, 466–472 (2009).

    Article  CAS  Google Scholar 

  26. Wang, J. X., Marinković, N. S., Zajonz, H., Ocko, B. M. & Adžić, R. R. In situ X-ray reflectivity and voltammetry study of Ru(0001) surface oxidation in electrolyte solutions. J. Phys. Chem. B 105, 2809–2814 (2001).

    Article  CAS  Google Scholar 

  27. Skúlason, E. et al. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 114, 18182–18197 (2010).

    Article  Google Scholar 

  28. Marković, N. M. et al. Effect of temperature on surface processes at the Pt(111)−liquid interface: hydrogen adsorption, oxide formation, and CO oxidation. J. Phys. Chem. B 103, 8568–8577 (1999).

    Article  Google Scholar 

  29. Marinkovic, N. S. et al. Hydrogen adsorption on single-crystal platinum electrodes in alkaline solutions. J. Electroanal. Chem. 330, 433–452 (1992).

    Article  CAS  Google Scholar 

  30. Strmcnik, D. S. et al. Unique activity of platinum adislands in the CO electrooxidation reaction. J. Am. Chem. Soc. 130, 15332–15339 (2008).

    Article  CAS  Google Scholar 

  31. Marković, N. M., Grgur, B. N., Lucas, C. A. & Ross, P. N. Electrooxidation of CO and H2/CO mixtures on Pt(111) in acid solutions. J. Phys. Chem. B 103, 487–495 (1999).

    Article  Google Scholar 

  32. Strmcnik, D. S. et al. Unique activity of platinum adislands in the CO electrooxidation reaction. J. Am. Chem. Soc. 130, 15332–15339 (2008).

    Article  CAS  Google Scholar 

  33. Arenz, M. et al. The effect of the particle size on the kinetics of CO electrooxidation on high surface area Pt catalysts. J. Am. Chem. Soc. 127, 6819–6829 (2005).

    Article  CAS  Google Scholar 

  34. Climent, V., Attard, G. A. & Feliu, J. M. Potential of zero charge of platinum stepped surfaces: a combined approach of CO charge displacement and N2O reduction. J. Electroanal. Chem. 532, 67–74 (2002).

    Article  CAS  Google Scholar 

  35. Gasteiger, H. A., Ross, P. N. & Cairns, E. J. LEIS and AES on sputtered and annealed polycrystalline Pt–Ru bulk alloys. Surf. Sci. 293, 67–80 (1993).

    Article  CAS  Google Scholar 

  36. Subbaraman, R. et al. Origin of anomalous activities for electrocatalysts in alkaline electrolytes. J. Phys. Chem. C 116, 7, 22231–22237 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences, US Department of Energy (contract no. DE-AC02-06CH11357).

Author information

Authors and Affiliations

Authors

Contributions

D.S. and N.M.M. conceived and designed the experiments. D.S., M.U., D.v.D., N.D. and A.P.P. performed the experiments. C.W. contributed materials (Ir nanoparticles). D.S., R.S., V.R.S. and N.M.M. discussed the results and co-wrote the paper.

Corresponding author

Correspondence to Nenad M. Markovic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2358 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strmcnik, D., Uchimura, M., Wang, C. et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nature Chem 5, 300–306 (2013). https://doi.org/10.1038/nchem.1574

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1574

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing