Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A heparin-mimicking polymer conjugate stabilizes basic fibroblast growth factor

Abstract

Basic fibroblast growth factor (bFGF) is a protein that plays a crucial role in diverse cellular functions, from wound healing to bone regeneration. However, a major obstacle to the widespread application of bFGF is its inherent instability during storage and delivery. Here, we describe the stabilization of bFGF by covalent conjugation with a heparin-mimicking polymer, a copolymer consisting of styrene sulfonate units and methyl methacrylate units bearing poly(ethylene glycol) side chains. The bFGF conjugate of this polymer retained bioactivity after synthesis and was stable to a variety of environmentally and therapeutically relevant stressors—such as heat, mild and harsh acidic conditions, storage and proteolytic degradation—unlike native bFGF. Following the application of stress, the conjugate was also significantly more active than the control conjugate system in which the styrene sulfonate units were omitted from the polymer structure. This research has important implications for the clinical use of bFGF and for the stabilization of heparin-binding growth factors in general.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Syntheses and cytotoxicity study of the polymers.
Figure 2: Conjugation of the polymers to bFGF and characterization.
Figure 3: Stability study of bFGF–heparin-mimicking polymer conjugate bFGF–p(SS-co-PEGMA), compared to control groups.
Figure 4: Inhibition of FGFR1 activation induced by bFGF and the bFGF–heparin-mimicking polymer conjugate bFGF–p(SS-co-PEGMA).
Figure 5: Proliferation study with BaF3 cells in response to the addition of the heparin-mimicking polymer and its bFGF conjugate.

Similar content being viewed by others

References

  1. Abuchowski, A., Vanes, T., Palczuk, N. C. & Davis, F. F. Alteration of immunological properties of bovine serum-albumin by covalent attachment of polyethylene-glycol. J. Biol. Chem. 252, 3578–3581 (1977).

    CAS  PubMed  Google Scholar 

  2. Duncan, R. The dawning era of polymer therapeutics. Nature Rev. Drug Discov. 2, 347–360 (2003).

    Article  CAS  Google Scholar 

  3. Alconcel, S. N. S., Baas, A. S. & Maynard, H. D. FDA-approved poly(ethylene glycol)–protein conjugate drugs. Polym. Chem. 2, 1442–1448 (2011).

    Article  CAS  Google Scholar 

  4. Keefe, A. J. & Jiang, S. Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nature Chem. 4, 59–63 (2012).

    Article  CAS  Google Scholar 

  5. Mancini, R. J., Lee, J. & Maynard, H. D. Trehalose glycopolymers for stabilization of protein conjugates to environmental stressors. J. Am. Chem. Soc. 134, 8474–8479 (2012).

    Article  CAS  Google Scholar 

  6. Capila, I. & Linhardt, R. J. Heparin–protein interactions. Angew. Chem. Int. Ed. 41, 391–412 (2002).

    Article  Google Scholar 

  7. Cardin, A. D. & Weintraub, H. J. R. Molecular modeling of protein–glycosaminoglycan interactions. Arteriosclerosis 9, 21–32 (1989).

    Article  CAS  Google Scholar 

  8. Slack, J. M. W., Darlington, B. G., Heath, J. K. & Godsave, S. F. Mesoderm induction in early xenopus embryos by heparin-binding growth-factors. Nature 326, 197–200 (1987).

    Article  CAS  Google Scholar 

  9. Cross, M. J. & Claesson-Welsh, L. FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol. Sci. 22, 201–207 (2001).

    Article  CAS  Google Scholar 

  10. Kawai, K., Suzuki, S., Tabata, Y., Ikada, Y. & Nishimura, Y. Accelerated tissue regeneration through incorporation of basic fibroblast growth factor-impregnated gelatin microspheres into artificial dermis. Biomaterials 21, 489–499 (2000).

    Article  CAS  Google Scholar 

  11. Canalis, E., Centrella, M. & McCarthy, T. Effects of basic fibroblasat growth-factor on bone-formation in vitro. J. Clin. Invest. 81, 1572–1577 (1988).

    Article  CAS  Google Scholar 

  12. Timmer, M. et al. Fibroblast growth factor (FGF)-2 and FGF receptor 3 are required for the development of the substantia nigra, and FGF-2 plays a crucial role for the rescue of dopaminergic neurons after 6-hydroxydopamine lesion. J. Neurosci. 27, 459–471 (2007).

    Article  CAS  Google Scholar 

  13. Levenstein, M. E. et al. Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells 24, 568–574 (2006).

    Article  CAS  Google Scholar 

  14. Barrientos, S., Stojadinovic, O., Golinko, M. S., Brem, H. & Tomic-Canic, M. Growth factors and cytokines in wound healing. Wound Repair Regen. 16, 585–601 (2008).

    Article  Google Scholar 

  15. Shipley, G. D., Keeble, W. W., Hendrickson, J. E., Coffey, R. J. & Pittelkow, M. R. Growth of normal human keratinocytes and fibroblasts in serum-free medium is stimulated by acidic and basic fibroblast growth-factor. J. Cell Physiol. 138, 511–518 (1989).

    Article  CAS  Google Scholar 

  16. Pittelkow, M. R. & Shipley, G. D. Serum-free culture of normal human melanocytes—growth-kinetics and growth-factor requirements. J. Cell Physiol. 140, 565–576 (1989).

    Article  CAS  Google Scholar 

  17. Edelman, E. R., Mathiowitz, E., Langer, R. & Klagsbrun, M. Controlled and modulated release of basic fibroblast growth-factor. Biomaterials 12, 619–626 (1991).

    Article  CAS  Google Scholar 

  18. Whalen, G. F., Shing, Y. & Folkman, J. The fate of intravenously administered bFGF and the effect of heparin. Growth Factors 1, 156–164 (1989).

    Article  Google Scholar 

  19. Richard, J. L. et al. Effect of topical basic fibroblast growth-factor on the healing of chronic diabetic neuropathic ulcer of the foot—a pilot, randomized, double-blind, placebo-controlled study. Diabetes Care 18, 64–69 (1995).

    Article  CAS  Google Scholar 

  20. Gospodarowicz, D. & Cheng, J. Heparin protects basic and acidic FGF from inactivation. J. Cell Physiol. 128, 475–484 (1986).

    Article  CAS  Google Scholar 

  21. Sakiyama-Elbert, S. E. et al. in Comprehensive Biomaterials Vol. 4 (eds Ducheyne, P.) Ch. 420, 333–339 (Elsevier, 2011).

    Book  Google Scholar 

  22. Cariou, R., Harousseau, J. L. & Tobelem, G. Inhibition of human-endothelial cell-proliferation by heparin and steroids. Cell Biol. Int. Rep. 12, 1037–1047 (1988).

    Article  CAS  Google Scholar 

  23. Ferrao, A. V. & Mason, R. M. The effect of heparin on cell-proliferation and type-I collagen-synthesis by adult human dermal fibroblasts. Biochim. Biophys. Acta 1180, 225–230 (1993).

    Article  CAS  Google Scholar 

  24. Liekens, S. et al. Modulation of fibroblast growth factor-2 receptor binding, signaling, and mitogenic activity by heparin-mimicking polysulfonated compounds. Mol. Pharmacol. 56, 204–213 (1999).

    Article  CAS  Google Scholar 

  25. Guan, R., Sun, X. L., Hou, S. J., Wu, P. Y. & Chaikof, E. L. A glycopolymer chaperone for fibroblast growth factor-2. Bioconj. Chem. 15, 145–151 (2004).

    Article  CAS  Google Scholar 

  26. Christman, K. L. et al. Nanoscale growth factor patterns by immobilization on a heparin-mimicking polymer. J. Am. Chem. Soc. 130, 16585–16591 (2008).

    Article  CAS  Google Scholar 

  27. Kolodziej, C. M. et al. Combination of integrin-binding peptide and growth factor promotes cell adhesion on electron-beam-fabricated patterns. J. Am. Chem. Soc. 134, 247–255 (2012).

    Article  CAS  Google Scholar 

  28. Wu, X., Li, X., Zeng, Y., Zheng, Q. & Wu, S. Site-directed PEGylation of human basic fibroblast growth factor. Protein Expr. Purif. 48, 24–27 (2006).

    Article  CAS  Google Scholar 

  29. Wu, X. et al. Purification and modification by polyethylene glycol of a new human basic fibroblast growth factor mutant-hbFGFSer25,87,92. J. Chromatogr. A 1161, 51–55 (2007).

    Article  CAS  Google Scholar 

  30. DeLong, S. A., Moon, J. J. & West, J. L. Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration. Biomaterials 26, 3227–3234 (2005).

    Article  CAS  Google Scholar 

  31. Kang, C. E., Tator, C. H. & Shoichet, M. S. Poly(ethylene glycol) modification enhances penetration of fibroblast growth factor 2 to injured spinal cord tissue from an intrathecal delivery system. J. Control. Rel. 144, 25–31 (2010).

    Article  CAS  Google Scholar 

  32. Huang, Z. F. et al. Solid-phase N-terminus PEGylation of recombinant human fibroblast growth factor 2 on heparin-sepharose column. Bioconj. Chem. 23, 740–750 (2012).

    Article  CAS  Google Scholar 

  33. Sumerlin, B. S. Proteins as initiators of controlled radical polymerization: grafting-from via ATRP and RAFT. ACS Macro Lett. 1, 141–145 (2012).

    Article  CAS  Google Scholar 

  34. Tolstyka, Z. & Maynard, H. D. in Comprehensive Polymer Science Vol. 9 (eds Matyjaszewski, K. & Möller, M.) Ch. 17, 317–337 (Elsevier, 2012).

    Google Scholar 

  35. Moad, G., Rizzardo, E. & Thang, S. H. Living radical polymerization by the RAFT process—a third update. Aust. J. Chem. 65, 985–1076 (2012).

    Article  CAS  Google Scholar 

  36. Chang, C. W., Bays, E., Tao, L., Alconcel, S. N. S. & Maynard, H. D. Differences in cytotoxicity of poly(PEGA)s synthesized by reversible addition–fragmentation chain transfer polymerization. Chem. Commun. 3580–3582 (2009).

  37. Maynard, H. D. & Hubbell, J. A. Discovery of a sulfated tetrapeptide that binds to vascular endothelial growth factor. Acta Biomater. 1, 451–459 (2005).

    Article  Google Scholar 

  38. Tao, L. et al. Synthesis of maleimide-end-functionalized star polymers and multimeric protein–polymer conjugates. Macromolecules 42, 8028–8033 (2009).

    Article  CAS  Google Scholar 

  39. Loo, J. A. et al. Electrospray ionization mass spectrometry and ion mobility analysis of the 20S proteasome complex. J. Am. Soc. Mass Spectr. 16, 998–1008 (2005).

    Article  CAS  Google Scholar 

  40. Gethin, G. The significance of surface pH in chronic wounds. Wounds UK 3, 52–56 (2007).

    Google Scholar 

  41. Mohammadi, M. et al. Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science 276, 955–960 (1997).

    Article  CAS  Google Scholar 

  42. Mohammadi, M. et al. Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. EMBO J. 17, 5896–5904 (1998).

    Article  CAS  Google Scholar 

  43. Johnson, D. E., Lu, J., Chen, H., Werner, S. & Williams, L. T. The human fibroblast growth-factor receptor genes—a common structural arrangement underlies the mechanisms for generating receptor forms that differ in their 3rd immunoglobulin domain. Mol. Cell. Biol. 11, 4627–4634 (1991).

    Article  CAS  Google Scholar 

  44. Schlessinger, J. et al. Crystal structure of a ternary FGF–FGFR–heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol. Cell 6, 743–750 (2000).

    Article  CAS  Google Scholar 

  45. Plotnikov, A. N., Schlessinger, J., Hubbard, S. R. & Mohammadi, M. Structural basis for FGF receptor dimerization and activation. Cell 98, 641–650 (1999).

    Article  CAS  Google Scholar 

  46. Ornitz, D. M. & Leder, P. Ligand specificity and heparin dependence of fibroblast growth-factor receptor-1 and receptor-3. J. Biol. Chem. 267, 16305–16311 (1992).

    CAS  PubMed  Google Scholar 

  47. Fishburn, C. S. The pharmacology of PEGylation: balancing PD with PK to generate novel therapeutics. J. Pharm. Sci. 97, 4167–4183 (2008).

    Article  CAS  Google Scholar 

  48. Pasut, G. & Veronese, F. M. Polymer–drug conjugation, recent achievements and general strategies. J. Pharm. Sci. 32, 933–961 (2007).

    CAS  Google Scholar 

  49. Khondee, S., Olsen, C. M., Zeng, Y. H., Middaugh, C. R. & Berkland, C. Noncovalent PEGylation by polyanion complexation as a means to stabilize keratinocyte growth factor-2 (KGF-2). Biomacromolecules 12, 3880–3894 (2011).

    Article  CAS  Google Scholar 

  50. Griffith, B. R., Allen, B. L., Rapraeger, A. C. & Kiessling, L. L. A polymer scaffold for protein oligomerization. J. Am. Chem. Soc. 126, 1608–1609 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (CHE-0809832) and the National Institutes of Health (R01 EB136774 to H.D.M.; R01 GM103479 to J.A.L.). The authors thank D. Ornitz (Washington University) for providing the engineered BaF3 cell line.

Author information

Authors and Affiliations

Authors

Contributions

T.H.N. prepared the polymers and the conjugates, performed the biological cell studies and the mass spectrometry measurements, devised some of the experiments, and prepared the manuscript. S.H.K. initiated the on-column conjugation technique and initiated cell experiments. C.G.D. helped with the polymer syntheses. D.Y.W. assisted with the cell studies and performed statistical analyses. J.A.L. advised on the mass spectrometry and ion mobility studies. H.D.M. devised the project and many of the experiments, supervised all experiments, and helped analyse the data. All authors assisted with editing the manuscript.

Corresponding author

Correspondence to Heather D. Maynard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5162 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, T., Kim, SH., Decker, C. et al. A heparin-mimicking polymer conjugate stabilizes basic fibroblast growth factor. Nature Chem 5, 221–227 (2013). https://doi.org/10.1038/nchem.1573

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1573

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing