Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An iron complex with pendent amines as a molecular electrocatalyst for oxidation of hydrogen

Abstract

The increasing energy needs of society have led to a search for technologies that can tap carbon-neutral and sustainable energy sources, such as solar and wind. Using properly designed catalysts, such sources can also be used to create fuels such as hydrogen; however, a significant barrier to the use of hydrogen as an energy carrier is the need for an inexpensive and efficient catalyst for its oxidation. The oxidation of hydrogen is the process by which electricity is produced in low-temperature fuel cells, and the best catalyst for this is platinum—a precious metal of low abundance. Here we report a molecular complex of iron (an abundant and inexpensive metal) as a rationally designed electrocatalyst for the oxidation of H2 at room temperature, with turnover frequencies of 0.66–2.0 s−1 and low overpotentials of 160–220 mV. This iron complex, , has pendent amines in the diphosphine ligand that function as proton relays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthetic reactions used to prepare iron complexes.
Figure 2: Molecular structures of [ (1-Cl) and [ (1-H) determined by X-ray crystallography.
Figure 3: Electrochemical studies of iron complexes at 22 °C.
Figure 4: Cyclic voltammograms of a fluorobenzene solution of 1-H (1.0 mM).
Figure 5: Proposed mechanism for electrocatalytic oxidation of H2.

Similar content being viewed by others

References

  1. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    CAS  PubMed  Google Scholar 

  2. Cook, T. R. et al. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010).

    CAS  PubMed  Google Scholar 

  3. Gray, H. B. Powering the planet with solar fuel. Nature Chem. 1, 7 (2009).

    CAS  Google Scholar 

  4. Bullock, R. M. Catalysis Without Precious Metals (Wiley-VCH, 2010).

    Google Scholar 

  5. Wang, M., Chen, L. & Sun, L. Recent progress in electrochemical hydrogen production with earth-abundant metal complexes as catalysts. Energy Environ. Sci. 5, 6763–6778 (2012).

    CAS  Google Scholar 

  6. Bolm, C. A new iron age. Nature Chem. 1, 420 (2009).

    CAS  Google Scholar 

  7. Vincent, K. A., Parkin, A. & Armstrong, F. A. Investigating and exploiting the electrocatalytic properties of hydrogenases. Chem. Rev. 107, 4366–4413 (2007).

    CAS  PubMed  Google Scholar 

  8. Fontecilla-Camps, J. C., Volbeda, A., Cavazza, C. & Nicolet, Y. Structure/ function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem. Rev. 107, 4273–4303 (2007).

    CAS  Google Scholar 

  9. Tard, C. et al. Synthesis of the H-cluster framework of iron-only hydrogenase. Nature 434, 610–613 (2005).

    Google Scholar 

  10. Darensbourg, M. Y., Lyon, E. J. & Smee, J. J. The bio-organometallic chemistry of active site iron in hydrogenases. Coord. Chem. Rev. 206–207, 533–561 (2000).

    Google Scholar 

  11. Gloaguen, F. & Rauchfuss, T. B. Small molecule mimics of hydrogenases: hydrides and redox. Chem. Soc. Rev. 38, 100–108 (2009).

    CAS  PubMed  Google Scholar 

  12. Liu, X., Ibrahim, S. K., Tard, C. & Pickett, C. J. Iron-only hydrogenase: synthetic, structural and reactivity studies of model compounds. Coord. Chem. Rev. 249, 1641–1652 (2005).

    CAS  Google Scholar 

  13. Kilgore, U. et al. [Ni(PPh2NC6H4X2)2](BF4)2 complexes as electrocatalysts for H2 production: effect of substituents, acids, and water on catalytic rates. J. Am. Chem. Soc. 133, 5861–5872 (2011).

    CAS  PubMed  Google Scholar 

  14. Kilgore, U. J. et al. Studies of a series of [Ni(PR2NPh2)2(CH3CN)]2+ complexes as electrocatalysts for H2 production: substituent variation at the phosphorus atom of the P2N2 ligand. Inorg. Chem. 50, 10908–10918 (2011).

    CAS  PubMed  Google Scholar 

  15. Wiese, S., Kilgore, U. J., DuBois, D. L. & Bullock, R. M. [Ni(PMe2NPh2)2](BF4)2 as an electrocatalyst for H2 production. ACS Catal. 2, 720–727 (2012).

    CAS  Google Scholar 

  16. Pool, D. H. et al. An acidic ionic liquid/water solution as both medium and proton source for electrocatalytic H2 evolution by [Ni(P2N2)2]2+ complexes. Proc. Natl Acad. Sci. USA 109, 15634–15639 (2012).

    CAS  PubMed  Google Scholar 

  17. Yang, J. Y. et al. Hydrogen oxidation catalysis by a nickel diphosphine complex with pendant t-butyl amines. Chem. Commun. 46, 8618–8620 (2010).

    CAS  Google Scholar 

  18. Yang, J. Y. et al. Mechanistic insights into catalytic H2 oxidation by Ni complexes containing a diphosphine ligand with a positioned amine base. J. Am. Chem. Soc. 131, 5935–5945 (2009).

    CAS  PubMed  Google Scholar 

  19. Fan, H-J. & Hall, M. B. A capable bridging ligand for Fe-only hydrogenase: density functional calculations of a low-energy route for heterolytic cleavage and formation of dihydrogen. J. Am. Chem. Soc. 123, 3828–3829 (2001).

    CAS  PubMed  Google Scholar 

  20. Helm, M. L., Stewart, M. P., Bullock, R. M., Rakowski DuBois, M. & DuBois, D. L. A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s−1 for H2 production. Science 333, 863–866 (2011).

    CAS  PubMed  Google Scholar 

  21. Hu, X., Brunschwig, B. S. & Peters, J. C. Electrocatalytic hydrogen evolution at low overpotentials by cobalt macrocyclic glyoxime and tetraimine complexes. J. Am. Chem. Soc. 129, 8988–8998 (2007).

    CAS  PubMed  Google Scholar 

  22. Sun, Y. et al. Molecular cobalt pentapyridine catalysts for generating hydrogen from water. J. Am. Chem. Soc. 133, 9212–9215 (2011).

    CAS  PubMed  Google Scholar 

  23. Dempsey, J. L., Brunschwig, B. S., Winkler, J. R. & Gray, H. B. Hydrogen evolution catalyzed by cobaloximes. Acc. Chem. Res. 42, 1995–2004 (2009).

    CAS  PubMed  Google Scholar 

  24. Artero, V., Chavarot-Kerlidou, M. & Fontecave, M. Splitting water with cobalt. Angew. Chem. Int. Ed. 50, 7238–7266 (2011).

    CAS  Google Scholar 

  25. Appel, A. M., DuBois, D. L. & Rakowski DuBois, M. Molybdenum–sulfur dimers as electrocatalysts for the production of hydrogen at low overpotentials. J. Am. Chem. Soc. 127, 12717–12726 (2005).

    CAS  PubMed  Google Scholar 

  26. Karunadasa, H. I., Chang, C. J. & Long, J. R. A molecular molybdenum-oxo catalyst for generating hydrogen from water. Nature 464, 1329–1333 (2010).

    CAS  PubMed  Google Scholar 

  27. Karunadasa, H. I. et al. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 335, 698–702 (2012).

    CAS  PubMed  Google Scholar 

  28. Chong, D. et al. Electrocatalysis of hydrogen production by active site analogues of the iron hydrogenase enzyme: structure/function relationships. Dalton Trans. 4158–4163 (2003).

  29. Mejia-Rodriguez, R., Chong, D., Reibenspies, J. H., Soriaga, M. P. & Darensbourg, M. Y. The hydrophilic phosphatriazaadamantane ligand in the development of H2 production electrocatalysts: iron hydrogenase model complexes. J. Am. Chem. Soc. 126, 12004–12014 (2004).

    CAS  PubMed  Google Scholar 

  30. Carroll, M. E., Barton, B. E., Rauchfuss, T. B. & Carroll, P. J. Synthetic models for the active site of the [FeFe]-hydrogenase: catalytic proton reduction and the structure of the doubly protonated intermediate. J. Am. Chem. Soc. 134, 18843–18852 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rose, M. J., Gray, H. B. & Winkler, J. R. Hydrogen generation catalyzed by fluorinated diglyoxime–iron complexes at low overpotentials. J. Am. Chem. Soc. 134, 8310–8313 (2012).

    CAS  PubMed  Google Scholar 

  32. Le Goff, A. et al. From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Science 326, 1384–1387 (2009).

    CAS  PubMed  Google Scholar 

  33. Camara, J. M. & Rauchfuss, T. B. Mild redox complementation enables H2 activation by [FeFe]-hydrogenase models. J. Am. Chem. Soc. 133, 8098–8101 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ringenberg, M. R., Kokatam, S. L., Heiden, Z. M. & Rauchfuss, T. B. Redox-switched oxidation of dihydrogen using a non-innocent ligand. J. Am. Chem. Soc. 130, 788–789 (2008).

    CAS  PubMed  Google Scholar 

  35. Ogo, S. Electrons from hydrogen. Chem. Commun. 3317–3325 (2009).

  36. Ringenberg, M. R., Nilges, M. J., Rauchfuss, T. B. & Wilson, S. R. Oxidation of dihydrogen by iridium complexes of redox-active ligands. Organometallics 29, 1956–1965 (2010).

    CAS  Google Scholar 

  37. Camara, J. M. & Rauchfuss, T. B. Combining acid–base, redox and substrate binding functionalities to give a complete model for the [FeFe]-hydrogenase. Nature Chem. 4, 26–30 (2012).

    CAS  Google Scholar 

  38. DuBois, D. L. & Bullock, R. M. Molecular electrocatalysts for the oxidation of hydrogen and the production of hydrogen—the role of pendant amines as proton relays. Eur. J. Inorg. Chem. 1017–1027 (2011).

  39. Liu, T. et al. Synthesis, characterization and reactivity of Fe complexes containing cyclic diazadiphosphine ligands: the role of the pendant base in heterolytic cleavage of H2 . J. Am. Chem. Soc. 134, 6257–6272 (2012).

    CAS  PubMed  Google Scholar 

  40. Deck, P. A. Perfluoroaryl-substituted cyclopentadienyl complexes of transition metals. Coord. Chem. Rev. 250, 1032–1055 (2006).

    CAS  Google Scholar 

  41. Luther, T. A. & Heinekey, D. M. Synthesis, characterization, and reactivity of dicationic dihydrogen complexes of osmium and ruthenium. Inorg. Chem. 37, 127–132 (1998).

    CAS  PubMed  Google Scholar 

  42. Maltby, P. A. et al. Dihydrogen with frequency of motion near to the 1H Larmor frequency. Solid state structures and solution NMR spectroscopy of osmium complexes trans- [Os(H···H)X(PPh2CH2CH2PPh2)]+, X=Cl, Br. J. Am. Chem. Soc. 118, 5396–5407 (1996).

    CAS  Google Scholar 

  43. Kaljurand, I. et al. Extension of the self-consistent spectrophotometric basicity scale in acetonitrile to a full span of 28 pKa units: unification of different basicity scales. J. Org. Chem. 70, 1019–1028 (2005).

    CAS  PubMed  Google Scholar 

  44. Kütt, A. et al. A comprehensive self-consistent spectrophotometric acidity scale of neutral Bronsted acids in acetonitrile. J. Org. Chem. 71, 2829–2838 (2006).

    PubMed  Google Scholar 

  45. Leito, I., Kaljurand, I., Koppel, I. A., Yagupolskii, L. M. & Vlasov, V. M. Spectrophotometric acidity scale of strong neutral bronsted acids in acetonitrile. J. Org. Chem. 63, 7868–7874 (1998).

    CAS  Google Scholar 

  46. Kaljurand, I., Rodima, T., Leito, I., Koppel, I. A. & Schwesinger, R. Self-consistent spectrophotometric basicity scale in acetonitrile covering the range between pyridine and DBU. J. Org. Chem. 65, 6202–6208 (2000).

    CAS  PubMed  Google Scholar 

  47. Tilset, M. et al. Theoretical, thermodynamic, spectroscopic, and structural studies of the consequences of one-electron oxidation on the Fe–X bonds in 17- and 18-electron Cp*Fe(dppe)X complexes (X=F, Cl, Br, I, H, CH3). J. Am. Chem. Soc. 123, 9984–10000 (2001).

    CAS  PubMed  Google Scholar 

  48. Nicholson, R. S. & Shain, I. Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal. Chem. 36, 706–723 (1964).

    CAS  Google Scholar 

  49. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications 231, 2nd edn (Wiley, 2001).

    Google Scholar 

  50. Savéant, J. M. & Vianello, E. Potential-sweep chronoamperometry: kinetic currents for first-order chemical reaction parallel to electron-transfer process (catalytic currents). Electrochim. Acta 10, 905–920 (1965).

    Google Scholar 

  51. Kisanga, P. B., Verkade, J. G. & Schwesinger, R. pKa measurements of P(RNCH2CH3)3N. J. Org. Chem. 65, 5431–5432 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, for the initial parts of this work. Current work is supported by the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. The Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. The authors thank J.A.S. Roberts for advice on the open-circuit potential measurements.

Author information

Authors and Affiliations

Authors

Contributions

D.L.D., R.M.B. and T.L. designed and interpreted the experiments and wrote the paper. All experiments were performed by T.L.

Corresponding author

Correspondence to R. Morris Bullock.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2958 kb)

Supplementary information

Crystallographic data for compound 1-CL. (CIF 57 kb)

Supplementary information

Crystallographic data for compound 1-H. (CIF 56 kb)

Supplementary information

Crystallographic data for compound Fe(P t Bu N Bn )Cl 2 . (CIF 56 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T., DuBois, D. & Bullock, R. An iron complex with pendent amines as a molecular electrocatalyst for oxidation of hydrogen. Nature Chem 5, 228–233 (2013). https://doi.org/10.1038/nchem.1571

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1571

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing