Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Mechanochemical synthesis

How grinding evolves

An experimental set-up has been devised to monitor mechanochemical processes in situ, yielding direct insights into mechanistic and kinetic aspects of solid-state reactions that are promoted by grinding, such as the synthesis of metal–organic frameworks.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In situ powder XRD studies to monitor the evolution of the reaction that occurs on milling ZnO and HEtIm together under ILAG conditions (using dimethyl formamide as the liquid and NH4NO3 as the salt additive).

References

  1. Boldyrev, V. V. & Tkáčová, K. J. Mater. Synth. Proc. 8, 121–132 (2000).

    Article  CAS  Google Scholar 

  2. Takacs, L. J. Metals 52, 12–13 (2000).

    CAS  Google Scholar 

  3. Faraday, M. Quart. J. Sci. Liter. Arts 8, 374–376 (1820).

    Google Scholar 

  4. Takacs, L. J. Therm. Anal. Calorim. 90, 81–84 (2007).

    Article  CAS  Google Scholar 

  5. Thomas, J. M. Chem. Britain 6, 60–64 (February 1970).

    CAS  Google Scholar 

  6. Lazuen Garay, A., Pichon, A. & James, S. L. Chem. Soc. Rev. 36, 846–855 (2007).

    Article  Google Scholar 

  7. James, S. L. et al. Chem. Soc. Rev. 41, 413–447 (2012).

    Article  CAS  Google Scholar 

  8. Friščić, T. et al. Nature Chem. 5, 66–73 (2013).10.1038/nchem.1505

    Article  CAS  Google Scholar 

  9. Cheung, E. Y. et al. J. Am. Chem. Soc. 125, 14658–14659 (2003).

    Article  CAS  Google Scholar 

  10. Fujii, K. et al. Chem. Commun. 46, 7572–7574 (2010).

    Article  CAS  Google Scholar 

  11. Friščić, T., Meštrović, E., Škalec Šamec, D., Kaitner, B. & Fábián, L. Chem. Eur. J. 15, 12644–12652 (2009).

    Article  Google Scholar 

  12. Beldon, P. J. et al. Angew. Chem. Int. Ed. 49, 9640–9643 (2010).

    Article  CAS  Google Scholar 

  13. Zhang, J.-P., Zhang, Y.-B., Lin, J.-B. & Chen, X.-M. Chem. Rev. 112, 1001–1033 (2012).

    Article  CAS  Google Scholar 

  14. Rietveld, H. M. J. Appl. Crystallogr. 2, 65–71 (1969).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth D. M. Harris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, K. How grinding evolves. Nature Chem 5, 12–14 (2013). https://doi.org/10.1038/nchem.1539

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1539

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing