Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A divergent approach to the synthesis of the yohimbinoid alkaloids venenatine and alstovenine

Abstract

The yohimbinoid alkaloids continue to receive considerable attention from the synthetic community because of their interesting chemical structures and varied biological activity. Although there are several elegant syntheses of certain members of this group of alkaloids, a truly unified approach has yet to be developed. In short, general approaches to this compound class are hampered by a lack of complete control in setting the C(3) stereocentre at a late stage. Herein, we report that a functionalized hydrindanone enables a divergent strategy that builds on existing precedent to address this long-standing challenge. Utilizing an aminonitrile intermediate, the stereochemistry at C(3) of the yohimbinoid skeleton can be controlled effectively in a Pictet–Spengler reaction. We applied this approach to the first total syntheses of the C(3) epimeric natural products venenatine and alstovenine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classic approaches to the synthesis of reserpine, and selected yohimbine and berbane alkaloids.
Figure 2: Retrosynthetic plan and synthesis of the aminonitrile Pictet-Spengler substrates.
Figure 3: Plausible reaction pathways for the thermal cyclization.
Figure 4: Synthesis of venenatine and alstovenine.

Similar content being viewed by others

References

  1. Chen, F-E. & Huang, J. Reserpine: a challenge for total synthesis of natural products. Chem. Rev. 105, 4671–4706 (2005).

    CAS  PubMed  Google Scholar 

  2. Aube, J. & Ghosh, S. in Advances in Heterocyclic Natural Products Vol. 3 (ed. Pearson, W. H.) 90–150 (JAI Press, 1996).

    Google Scholar 

  3. Szantay, C. & Honty, K. in Monoterpenoid Indole Alkaloids (ed. Saxton, J. E.) Ch. 4, 161–216 (Wiley, 1994).

    Google Scholar 

  4. Szantay, C., Blasko, G., Honty, K. & Dornyei, G. in The Alkaloids Vol. 27 (ed. Brossi, A.) 131–268 (Academic Press, 1986).

    Google Scholar 

  5. Schlitter, E. in The Alkaloids: Chemistry and Physiology Vol. VIII (ed. Manske, R. H. F.) 287–334 (Academic Press, 1965).

    Google Scholar 

  6. Baxter, E. W. & Mariano, P. S. in Alkaloids: Chemical and Biological Perspectives Vol.8 (ed. Pelletier, S. W.) 197–319 (Springer, 1992).

    Google Scholar 

  7. Goldberg, M. R. & Robertson D. Yohimbine: a pharmacological probe for study of the alpha-2-adrenoreceptor. Pharmacological Reviews 35, 143–180 (1983).

    CAS  PubMed  Google Scholar 

  8. Tam, S. W., Worcel, M. & Wyllie, M. Yohimbine: a clinical review. Pharmacol. Ther. 91, 215–243 (2001).

    CAS  PubMed  Google Scholar 

  9. Woodward, R. B., Bader, F. E., Bickel, H., Frey, A. J. & Kierstead, R. W. The total synthesis of reserpine. Tetrahedron 2, 1–57 (1958).

    CAS  Google Scholar 

  10. Woodward, R. B., Bader, F. E., Bickel, H., Frey, A. J. & Kierstead, R. W. The total synthesis of reserpine. J. Am. Chem. Soc. 78, 2023–2025 (1956).

    CAS  Google Scholar 

  11. Woodward, R. B., Bader, F. E., Bickel, H., Frey, A. J. & Kierstead, R. W. A simplified route to a key intermediate in the total synthesis of reserpine. J. Am. Chem. Soc. 78, 2657–2657 (1956).

    CAS  Google Scholar 

  12. Stork, G. The stereospecific synthesis of reserpine. Pure. Appl. Chem. 61, 439–442 (1989).

    CAS  Google Scholar 

  13. Stork, G., Tang, P. C., Casey, M., Goodman, B. & Toyota, M. Regiospecific and stereoselective syntheses of (±)-reserpine and (−)-reserpine. J. Am. Chem. Soc. 127, 16255–16262 (2005).

    CAS  PubMed  Google Scholar 

  14. Wender, P. A., Schaus, J. M. & White, A. W. General methodology for cis-hydroisoquinoline synthesis: synthesis of reserpine. J. Am. Chem. Soc. 102, 6157–6159 (1980).

    CAS  Google Scholar 

  15. Wender, P. A., Schaus, J. M. & White, A. W. General methodology for cis-hydroisoquinoline synthesis. 3. A sixteen step synthesis of reserpine. Heterocycles 3, 263–270 (1987).

    Google Scholar 

  16. Martin, S. F., Rueger, H., Williamson, S. A. & Grzejszczak, S. General strategies for the synthesis of indole alkaloids. Total synthesis of (±)-reserpine and (±)-α-yohimbine. J. Am. Chem. Soc. 109, 6124–6134 (1987).

    CAS  Google Scholar 

  17. Wenkert, E. et al. Total synthesis of the yohimbines. J. Am. Chem. Soc. 101, 5370–5376 (1979).

    CAS  Google Scholar 

  18. Sparks, S. M., Gutierrez, A. J. & Shea, K. J. Preparation of perhydroisoquinolines via the intramolecular Diels–Alder reaction of N-3,5-hexadienoyl ethyl acrylimidates: a formal synthesis of (±)-reserpine. J. Org. Chem. 68, 5274–5285 (2003).

    CAS  PubMed  Google Scholar 

  19. Szantay, C., Honty, K., Toke, L. & Szabo, L. Über Eine Einfache Synthese der Yohimbinalkaloide. Chem. Ber. 109, 1737–1748 (1976).

    CAS  Google Scholar 

  20. Toke, L., Honty, K., Szabo, L., Blasko, G. & Szantay, C. Synthesis of yohimbines. I. Total synthesis of alloyohimbine and α-yohimbine and their epimers. Revised structure of natural alloyohimbine. J. Org. Chem. 38, 2496–2500 (1973).

    CAS  Google Scholar 

  21. Hudlicky, T. & Reed, J. W. The Way of Synthesis 541–571 (Wiley, 2007).

    Google Scholar 

  22. Phillips, D. D. & Chadha, M. S. The alkaloids of Rauwolfia serpentine Benth. J. Am. Pharm. Assoc. (Baltim.) 44, 553–567 (1955).

    CAS  Google Scholar 

  23. Mookerjee, A. The alkaloids of Rauwolfia canescens linn. II. J. Ind. Chem. Soc. 18, 485–488 (1941).

    CAS  Google Scholar 

  24. Karrer, P. & Salomon, H. Uber Zwei Neue Alkaloide aus der Yohimberinde. Helv. Chim. Acta 9, 1059–1062 (1926).

    CAS  Google Scholar 

  25. Benoin, P. R., Burnell, R. H. & Medina, J. D. Alkaloids of Aspidosperma excelsum Benth. Can. J. Chem. 45, 725–730 (1967).

    CAS  Google Scholar 

  26. Takayama, H., Ishikawa, H., Kitajima, M., Aimi, N. & Aji, B. M. A new 9-methoxyyohimbine-type indole alkaloid from Mitragyna africanus. Chem. Pharm. Bull. 52, 359–361 (2004).

    CAS  PubMed  Google Scholar 

  27. Chatterjee, A., Majumder, P. L. & Ray, A. B. Structure of venoxidine, an alkaloid of Alstonia venenata R. Br. Tetrahedron Lett. 42, 159–162 (1965).

    CAS  PubMed  Google Scholar 

  28. Govindachari, T. R., Viswanathan, N., Pai, B. R. & Savitri, T. S. Chemical constituents of Alstonia venenata R. Br. Tetrahedron Lett. 16, 901–906 (1964).

    Google Scholar 

  29. Govindachari, T. R., Viswanathan, N., Pai, B. R. & Savitri, T. S. Chemical constituents of Alstonia venenata R. Br. Tetrahedron 21, 2951–2956 (1965).

    CAS  PubMed  Google Scholar 

  30. Chatterjee, A., Roy, D. J. & Mukhopadhyay, S. 16-epivenenatine and 16-epialstovenine, new stereomers from Alstonia venenata. Phytochemistry 20, 1981–1985 (1981).

    CAS  Google Scholar 

  31. Ray, A. B. & Chatterjee, A. Alstovenine, a new indole alkaloid isolated from Alstonia venenatus R. Br. J. Indian Chem. Soc. 40, 1043–1044 (1963).

    CAS  Google Scholar 

  32. Dutta, S. C. & Ray, A. B. Root alkaloids of Alstonia venenata R. Br. Indian. J. Chem. 13, 98–100 (1975).

    Google Scholar 

  33. Ray, A. B. & Chatterjee, A. Further studies on the major alkaloids of the stem-bark of Alstonia venenata R. Br. Structure and stereochemistry of alstovenine and its congeners. J. Indian Chem. Soc. 41, 638–640 (1964).

    CAS  Google Scholar 

  34. Bhattacharya, S. K., Ray, A. B. & Dutta, S. C. Psychopharmacological investigations of the 4-methoxyindole alkaloids of Alstonia venenata. Planta Med. 2, 164–170 (1975).

    Google Scholar 

  35. Vizi, E. S. et al. Berbanes: a new class of selective α-2-adrenoceptor antagonists. J. Med. Chem. 30, 1355–1359 (1987).

    CAS  PubMed  Google Scholar 

  36. Vizi, E. S. et al. CH-38083, a selective, potent antagonist of alpha-2 adrenoceptors. J. Pharmacol. Exp. Ther. 238, 701–706 (1986).

    CAS  PubMed  Google Scholar 

  37. Toth, I. et al. Investigations on the chemistry of berbanes. 10. Synthesis of raunescinone analogs with hypotensive and antihypertensive activity. J. Med. Chem. 27, 1411–1415 (1984).

    CAS  PubMed  Google Scholar 

  38. Jung, M. E. & Light, L. A. Stereospecific synthesis of substituted cis-hydrindan-5-one and their regiospecific enolization and functionalization: synthetic intermediates for reserpine. J. Am. Chem. Soc. 106, 7614–7618 (1984).

    CAS  Google Scholar 

  39. Ficini, J., Guingant, A. & d'Angelo, J. Synthese stereoselective des cis et trans carboxy-4-tetrahydro-3a,4,5,6-indanones-1. Tetrahedron Lett. 24, 907–910 (1983).

    CAS  Google Scholar 

  40. Lebold, T. P., Gallego, G. M., Marth, C. J. & Sarpong, R. Synthesis of the bridging framework of phragmalin-type limonoids. Org. Lett. 14, 2110–2113 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ley, S. V., Murray, P. J. & Palmer, B. D. Total synthesis of the sesquiterpene (±)-hirsutene using an organoselenium-mediated cyclization reaction. Tetrahedron 41, 4765–4769 (1985).

    CAS  Google Scholar 

  42. Farrugia, L. J. Ortep-3 for Windows – a version of ORTEP-III with a graphical user interface (GUI). J. Appl. Crystallogr. 30, 565–566 (1997).

    CAS  Google Scholar 

  43. Otero, N., Mandado, M. & Mosquera, R. A. Nucleophilicity of indole derivatives: activating and deactivating effects based on proton affinities and electron density properties. J. Phys. Chem. A. 111, 5557–5562 (2007).

    CAS  PubMed  Google Scholar 

  44. Pratihar, S. & Roy, S. Nucleophilicity and site selectivity of commonly used arenes and heteroarenes. J. Org. Chem. 75, 4957–4963 (2010).

    CAS  PubMed  Google Scholar 

  45. Han, D. et al. Conformational analysis of the cis- and trans-adducts of the Pictet–Spengler reaction. Evidence for the structural basis for the C(1)–N(2) scission process in the cis- to trans-isomerization. J. Nat. Prod. 70, 75–82 (2007).

    CAS  PubMed  Google Scholar 

  46. Deng, L., Czerwinski, K. & Cook, J. M. Stereospecificity in the Pictet–Spengler reaction kinetic vs thermodynamic control. Tetrahedron Lett. 32, 175–178 (1991).

    Google Scholar 

  47. Lounasmaa, M. & Jokela, R. Stereoregulation of the C(12b)H–C(2)H relationship in the preparation of 2-substituted 1,2,3,4,6,7,12,12b-octahydro-indolo[2,3-a]quinolizines. Tetrahedron 45, 3975–3992 (1989).

    CAS  Google Scholar 

  48. Reichardt, C. Solvents and Solvent Effects in Organic Chemistry 3rd edn (Wiley, 2002).

    Google Scholar 

  49. Lodewyk, M. W., Siebert, M. R. & Tantillo, D. J. Computational prediction of 1H and 13C chemical shifts: a useful tool for natural product, mechanistic, and synthetic organic chemistry. Chem. Rev. 112, 1839–1862 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Institutes of Health (NIGMS RO1 084906), the National Science Foundation (NSF) (CHE-0957416 and CHE-030089) and the American Cancer Society (RSG-09-017-01 CDD) for support of this work. R.S. is a Camille Dreyfus Teacher-Scholar. T.P.L. thanks the Natural Sciences and Engineering Research Council (Canada) for a postdoctoral fellowship. J.D. thanks the NSF for a predoctoral fellowship and J.L.W. thanks Chevron for a departmental fellowship. C. Kraml and N. Byrne from Lotus Separations are thanked for the separation of the enantiomers of the Diels–Alder adduct 18.

Author information

Authors and Affiliations

Authors

Contributions

T.P.L., J.L.W. and R.S. conceived and designed the synthetic experiments. T.P.L., J.L.W. and J.D. carried out the synthetic work. M.W.L. and D.J.T. carried out the computational work. T.P.L., J.L.W. and R.S. co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Richmond Sarpong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 8490 kb)

Supplementary information

Crystallographic data for compound 16b. (CIF 30 kb)

Supplementary information

Crystallographic data for compound 23b. (CIF 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebold, T., Wood, J., Deitch, J. et al. A divergent approach to the synthesis of the yohimbinoid alkaloids venenatine and alstovenine. Nature Chem 5, 126–131 (2013). https://doi.org/10.1038/nchem.1528

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1528

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing