Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Alteration of the oxygen-dependent reactivity of de novo Due Ferri proteins

A Corrigendum to this article was published on 23 November 2012

This article has been updated

Abstract

De novo proteins provide a unique opportunity to investigate the structure–function relationships of metalloproteins in a minimal, well-defined and controlled scaffold. Here, we describe the rational programming of function in a de novo designed di-iron carboxylate protein from the Due Ferri family. Originally created to catalyse the O2-dependent, two-electron oxidation of hydroquinones, the protein was reprogrammed to catalyse the selective N-hydroxylation of arylamines by remodelling the substrate access cavity and introducing a critical third His ligand to the metal-binding cavity. Additional second- and third-shell modifications were required to stabilize the His ligand in the core of the protein. These structural changes resulted in at least a 106-fold increase in the relative rate between the arylamine N-hydroxylation and hydroquinone oxidation reactions. This result highlights the potential for using de novo proteins as scaffolds for future investigations of the geometric and electronic factors that influence the catalytic tuning of di-iron active sites.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Important structural features of amino-acid sequences for the original and redesigned DFsc proteins.
Figure 2: Folding and metal-binding characterizations of G4DFsc and 3His-G4DFsc.
Figure 3: Ferroxidase activity of G4DFsc (top) and 3His-G4DFsc (bottom) indicated by the formation of a strong oxo-to-ferric charge-transfer band near 360 nm.
Figure 4: Hydroquinone oxidase activity of G4DFsc (top) and 3His-G4DFsc (bottom).
Figure 5: Oxygenation of p-anisidine by G4DFsc (top) and 3His-G4DFsc (bottom) in the presence of two equivalents of Fe(II).
Figure 6: N-hydroxylation of p-anisidine by 3His-G4DFsc.

Similar content being viewed by others

Change history

  • 13 November 2012

    In the version of this Article originally published, the name of the co-author Thomas Szyperski mistakenly included a middle initial G. This has now been corrected in the online versions.

References

  1. Kolberg, M., Strand, K. R., Graff, P. & Andersson, K. K. Structure, function, and mechanism of ribonucleotide reductases. BBA-Proteins Proteom. 1699, 1–34 (2004).

    Article  CAS  Google Scholar 

  2. Shanklin, J., Guy, J. E., Mishra, G. & Lindqvist, Y. Desaturases: emerging models for understanding functional diversification of diiron-containing enzymes. J. Biol. Chem. 284, 18559–18563 (2009).

    Article  CAS  Google Scholar 

  3. Berthold, D. A. & Stenmark, P. Membrane-bound diiron carboxylate proteins. Annu. Rev. Plant Biol. 54, 497–517 (2003).

    Article  CAS  Google Scholar 

  4. Solomon, E. I. et al. Geometric and electronic structure/function correlations in non-heme iron enzymes. Chem. Rev. 100, 235–350 (2000).

    Article  CAS  Google Scholar 

  5. Lippard, S. J. Hydroxylation of C–H bonds at carboxylate-bridged diiron centres. Phil. Trans. R. Soc. A 363, 861–877 (2005).

    Article  CAS  Google Scholar 

  6. Peters, J. W., Lanzilotta, W. N., Lemon, B. J. & Seefeldt, L. C. X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282, 1853–1858 (1998).

    Article  CAS  Google Scholar 

  7. Iyer, R. B., Silaghi-Dumitrescu, R., Kurtz, D. M. & Lanzilotta, W. N. High-resolution crystal structures of Desulfovibrio vulgaris (Hildenborough) nigerythrin: facile, redox-dependent iron movement, domain interface variability, and peroxidase activity in the rubrerythrins. J. Biol. Inorg. Chem. 10, 407–416 (2005).

    Article  CAS  Google Scholar 

  8. Jin, S., Kurtz, D. M., Liu, Z-J., Rose, J. & Wang, B-C. X-ray crystal structures of reduced rubrerythrin and its azide adduct: a structure-based mechanism for a non-heme diiron peroxidase. J. Am. Chem. Soc. 124, 9845–9855 (2002).

    Article  CAS  Google Scholar 

  9. Tempel, W. et al. Structural genomics of Pyrococcus furiosus: X-ray crystallography reveals 3D domain swapping in rubrerythrin. Proteins 57, 878–882 (2004).

    Article  CAS  Google Scholar 

  10. Johnson, D. C., Dean, D. R., Smith, A. D. & Johnson, M. K. Structure, function, and formation of biological iron-sulfur clusters. Annu. Rev. Biochem. 74, 247–281 (2005).

    Article  CAS  Google Scholar 

  11. Yu, C-A., Wen, X., Xiao, K., Xia, D. & Yu, L. Inter- and intra-molecular electron transfer in the cytochrome bc(1) complex. Biochim. Biophys. Acta 1555, 65–70 (2002).

    Article  CAS  Google Scholar 

  12. Silaghi-Dumitrescu, R., Kurtz, D. M., Ljungdahl, L. G. & Lanzilotta, W. N. X-ray crystal structures of Moorella thermoacetica FprA. Novel diiron site structure and mechanistic insights into a scavenging nitric oxide reductase. Biochemistry 44, 6492–6501 (2005).

    Article  CAS  Google Scholar 

  13. Calhoun, J. R. et al. Artificial diiron proteins: From structure to function. Peptide Sci. 80, 264–278 (2005).

    Article  CAS  Google Scholar 

  14. Maglio, O. et al. Diiron-containing metalloproteins: developing functional models. C.R. Chim. 10, 703–720 (2007).

    Article  CAS  Google Scholar 

  15. Andreini, C., Bertini, I., Cavallaro, G., Najmanovich, R. J. & Thornton, J. M. Structural analysis of metal sites in proteins: non-heme iron sites as a case study. J. Mol. Biol. 388, 356–380 (2009).

    Article  CAS  Google Scholar 

  16. Lombardi, A. et al. Retrostructural analysis of metalloproteins: application to the design of a minimal model for diiron proteins. Proc. Natl Acad. Sci. USA 97, 6298–6305 (2000).

    Article  CAS  Google Scholar 

  17. Faiella, M. et al. An artificial di-iron oxo-protein with phenol oxidase activity. Nature Chem. Biol. 5, 882–884 (2009).

    Article  CAS  Google Scholar 

  18. Kaplan, J. & DeGrado, W. F. De novo design of catalytic proteins. Proc. Natl Acad. Sci. USA 101, 11566–11570 (2004).

    Article  CAS  Google Scholar 

  19. Lee, D. & Lippard, S. J. in Comprehensive Coordination Chemistry II 2nd edn, 8 (eds McCleverty, J. A. & Meyer, T. J.) Section II 309–342 (Elsevier, 2003).

    Book  Google Scholar 

  20. Bou-Abdallah, F. The iron redox and hydrolysis chemistry of the ferritins. Biochem. Biophys. Acta 1800, 719–731 (2010).

    Article  CAS  Google Scholar 

  21. Calhoun, J. R. et al. Computational design and characterization of a monomeric helical dinuclear metalloprotein. J. Mol. Biol. 334, 1101–1115 (2003).

    Article  CAS  Google Scholar 

  22. Bell, C. B. et al. Spectroscopic definition of the biferrous and biferric sites in de novo designed four-helix bundle DFsc peptides: implications for O2 reactivity of binuclear non-heme iron enzymes. Biochemistry 48, 59–73 (2009).

    Article  CAS  Google Scholar 

  23. Calhoun, J. R. et al. Oxygen reactivity of the biferrous site in the de novo designed four helix bundle peptide DFsc: nature of the ‘intermediate’ and reaction mechanism. J. Am. Chem. Soc. 130, 9188–9189 (2008).

    Article  CAS  Google Scholar 

  24. Zocher, G., Winkler, R., Hertweck, C. & Schulz, G. E. Structure and action of the N-oxygenase AurF from Streptomyces thioluteus. J. Mol. Biol. 373, 65–74 (2007).

    Article  CAS  Google Scholar 

  25. Choi, Y. S., Zhang, H., Brunzelle, J. S., Nair, S. K. & Zhao, H. In vitro reconstitution and crystal structure of p-aminobenzoate N-oxygenase (AurF) involved in aureothin biosynthesis. Proc. Natl Acad. Sci. USA 105, 6858–6863 (2008).

    Article  CAS  Google Scholar 

  26. DeGrado, W. F., Summa, C. M., Pavone, V., Nastri, F. & Lombardi, A. De novo design and structural characterization of proteins and metalloproteins. Annu. Rev. Biochem. 68, 779–819 (1999).

    Article  CAS  Google Scholar 

  27. Di Costanzo, L. et al. Toward the de novo design of a catalytically active helix bundle: a substrate-accessible carboxylate-bridged dinuclear metal center. J. Am. Chem. Soc. 123, 12749–12757 (2001).

    Article  CAS  Google Scholar 

  28. Calhoun, J. R. et al. Solution NMR structure of a designed metalloprotein and complementary molecular dynamics refinement. Structure 16, 210–215 (2008).

    Article  CAS  Google Scholar 

  29. Kulp, D. W. et al. Structural informatics, modeling and design using a new open-source Molecular Software Library (MSL). J. Comp. Chem. 33, 1645–1661 (2012).

    Article  CAS  Google Scholar 

  30. Bertini, L. & Luchinat, C. High spin cobalt(II) as a probe for the investigation of metalloproteins. Adv. Inorg. Biochem. 6, 71–111 (1984).

    CAS  PubMed  Google Scholar 

  31. Solomon, E. I., Pavel, E. G., Loeb, K. E. & Campochiaro, C. Magnetic circular dichroism spectroscopy as a probe of the geometric and electronic structure of non-heme ferrous enzymes. Coord. Chem. Rev. 144, 369–460 (1995).

    Article  CAS  Google Scholar 

  32. Brown, C. A., Remar, G. J., Musselman, R. L. & Solomon, E. I. Spectroscopic and electronic structure studies of met-hemerythrin model complexes: a description of the ferric-oxo dimer bond. Inorg. Chem. 34, 688–717 (1995).

    Article  CAS  Google Scholar 

  33. Yang, X., Chen-Barrett, Y., Arosio, P. & Chasteen, N. D. Reaction paths of iron oxidation and hydrolysis in horse spleen and recombinant human ferritins. Biochemistry 37, 9743–9750 (1998).

    Article  CAS  Google Scholar 

  34. Yang, X., Le Brun, N. E., Thomson, A. J., Moore, G. R. & Chasteen, N. D. The iron oxidation and hydrolysis chemistry of Escherichia coli bacterioferritin. Biochemistry 39, 4915–4923 (2000).

    Article  CAS  Google Scholar 

  35. Fox, B. G., Shanklin, J., Ai, J., Loehr, T. M. & Sanders-Loehr, J. Resonance Raman evidence for an Fe–O–Fe center in stearoyl-ACP desaturase. Primary sequence identity with other diiron-oxo proteins. Biochemistry 33, 12776–12786 (1994).

    Article  CAS  Google Scholar 

  36. Bollinger, J. et al. Mechanism of assembly of the tyrosyl radical–dinuclear iron cluster cofactor of ribonucleotide reductase. Science 253, 292–298 (1991).

    Article  CAS  Google Scholar 

  37. Vincent, J. B., Olivier-Lilley, G. L. & Averill, B. A. Proteins containing oxo-bridged dinuclear iron centers: a bioinorganic perspective. Chem. Rev. 90, 1447–1467 (1990).

    Article  CAS  Google Scholar 

  38. Korboukh, V. K., Li, N., Barr, E. W., Bollinger, J. M. & Krebs, C. A long-lived, substrate-hydroxylating peroxodiiron(III/III) intermediate in the amine oxygenase, AurF, from Streptomyces thioluteus. J. Am. Chem. Soc. 131, 13608–13609 (2009).

    Article  CAS  Google Scholar 

  39. Corbett, J. F. Benzoquinone imines. Part V. Mechanism and kinetics of the reaction of p-benzoquinone monoimines with m-phenylenediamines. J. Chem. Soc., B: 823–826 (1969).

  40. Corbett, J. F. & Gamson, E. P. Benzoquinone imines. Part XI. Mechanism and kinetics of the reaction of p-benzoquinone di-imines with aniline and its derivatives. J. Chem. Soc. Perkin Trans. 2 1531–1537 (1972).

  41. Simurdiak, M., Lee, J. & Zhao, H. A new class of arylamine oxygenases: evidence that p-aminobenzoate N-oxygenase (AurF) is a di-iron enzyme and further mechanistic studies. ChemBioChem 7, 1169–1172 (2006).

    Article  CAS  Google Scholar 

  42. Li, N., Korboukh, V. K., Krebs, C. & Bollinger, J. M. Four-electron oxidation of p-hydroxylaminobenzoate to p-nitrobenzoate by a peroxodiferric complex in AurF from Streptomyces thioluteus. Proc. Natl Acad. Sci. USA 107, 15722–15727 (2010).

    Article  CAS  Google Scholar 

  43. Fries, A., Bretschneider, T., Winkler, R. & Hertweck, C. A ribonucleotide reductase-like electron transfer system in the nitroaryl-forming N-oxygenase AurF. ChemBioChem 12, 1832–1835 (2011).

    Article  CAS  Google Scholar 

  44. Johnson, B. H. & Hecht, M. H. Recombinant proteins can be isolated from E. coli cells by repeated cycles of freezing and thawing. Nature Biotech. 12, 1357–1360 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (F32-GM808852 to A.J.R., F32-GM095242 to M.M.P., GM54616 to W.F.D. and U54 GM094597 to T.S.) and the National Science Foundation (MCB-0919027 to E.I.S. and a MRSEC grant, DMR-1120901, to UPenn's LRSM).

Author information

Authors and Affiliations

Authors

Contributions

J.R.C. mutated, expressed and purified the initial G4DFsc construct. J.R.C. and A.J.R. performed the characterization and kinetic studies for G4DFsc. D.W.K. performed the computational modelling studies to determine the feasibility of 3His-G4DFsc mutations. A.J.R. mutated, expressed, produced and purified the 3His-G4DFsc construct, characterized the protein and designed, conducted and analysed the kinetic assays. S.E.B. expressed, produced and purified the 3His-G4DFsc construct and performed Co(II) binding titrations. M.M.P. characterized and analysed the possible reaction products of the arylamine-oxidation reaction, and expressed and purified 3His-G4DFsc and 3His-G2DFsc and their N15/C13 labelled forms for NMR experiments. H.J. synthesized, purified and characterized possible reaction products for retention-time comparisons. Y.W. collected and, with T.S., analysed the NMR structural data. R.A.S. performed and, with E.I.S., analysed Fe(II) CD titrations. A.J.R. and W.F.D. co-wrote the manuscript in consultation with the other contributors.

Corresponding authors

Correspondence to Amanda J. Reig or William F. DeGrado.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1128 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reig, A., Pires, M., Snyder, R. et al. Alteration of the oxygen-dependent reactivity of de novo Due Ferri proteins. Nature Chem 4, 900–906 (2012). https://doi.org/10.1038/nchem.1454

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1454

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing