Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiphase design of autonomic self-healing thermoplastic elastomers

Abstract

The development of polymers that can spontaneously repair themselves after mechanical damage would significantly improve the safety, lifetime, energy efficiency and environmental impact of man-made materials. Most approaches to self-healing materials require the input of external energy, healing agents, solvent or plasticizer. Despite intense research in this area, the synthesis of a stiff material with intrinsic self-healing ability remains a key challenge. Here, we show a design of multiphase supramolecular thermoplastic elastomers that combine high modulus and toughness with spontaneous healing capability. The designed hydrogen-bonding brush polymers self-assemble into a hard–soft microphase-separated system, combining the enhanced stiffness and toughness of nanocomposites with the self-healing capability of dynamic supramolecular assemblies. In contrast to previous self-healing polymers, this new system spontaneously self-heals as a single-component solid material at ambient conditions, without the need for any external stimulus, healing agent, plasticizer or solvent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design concept for the multiphase self-healing brush polymer system.
Figure 2: Synthesis of monomers and brush polymers.
Figure 3: Characterization of the basic bulk mechanical properties and multi-phase morphology of HBPs.
Figure 4: Self-healing tests for HBP-2 at room temperature.

Similar content being viewed by others

References

  1. Shinya, N. Frontiers of Self-Healing Materials and Applications (CMC Publishing Co., 2010).

    Google Scholar 

  2. Ghosh, S. K. Self-Healing Materials: Fundamental, Design Strategies, and Applications. (Wiley-VCH, 2009).

    Google Scholar 

  3. Chen, X. et al. A thermally re-mendable cross-linked polymeric material. Science 295, 1698–1702 (2002).

    Article  CAS  Google Scholar 

  4. Burattini, S. et al. A healable supramolecular polymer blend based on aromatic π–π stacking and hydrogen-bonding interactions. J. Am. Chem. Soc. 132, 12051–12058 (2010).

    Article  CAS  Google Scholar 

  5. Klukovich, H. M., Kean, Z. S., Iacono, S. T. & Craig, S. L. Mechanically induced scission and subsequent thermal remending of perfluorocyclobutane polymers. J. Am. Chem. Soc. 133, 17882–17888 (2011).

    Article  CAS  Google Scholar 

  6. Burnworth, M. et al. Optically healable supramolecular polymers. Nature 472, 334–337 (2011).

    Article  CAS  Google Scholar 

  7. Amamoto, Y., Kamada, J., Otsuka, H., Takahara, A. & Matyjaszewski, K. Repeatable photoinduced self-healing of covalently cross-linked polymers through reshuffling of trithiocarbonate units. Angew. Chem. Int. Ed. 50, 1660–1663 (2011).

    Article  CAS  Google Scholar 

  8. Ghosh, B. & Urban, M. W. Self-repairing oxetane-substituted chitosan polyurethane networks. Science 323, 1458–1460 (2009).

    Article  CAS  Google Scholar 

  9. Toohey, K. S., Sottos, N. R., Lewis, J. A., Moore, J. S. & White, S. R. Self-healing materials with microvascular networks. Nature Mater. 6, 581–585 (2007).

    Article  CAS  Google Scholar 

  10. White, S. R. et al. Autonomic healing of polymer composites. Nature 409, 794–797 (2001).

    Article  CAS  Google Scholar 

  11. Wang, Q. et al. High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463, 339–343 (2010).

    Article  CAS  Google Scholar 

  12. South, A. B. & Lyon, L. A. Autonomic self-healing of hydrogel thin films. Angew. Chem. Int. Ed. 49, 767–771 (2009).

    Article  Google Scholar 

  13. Imato, K. et al. Self-healing of chemical gels cross-linked by diarylbibenzofuranone-based trigger-free dynamic covalent bonds at room temperature. Angew. Chem. Int. Ed. 50, 1–5 (2011).

    Article  Google Scholar 

  14. Montarnal, D., Tournilhac, F., Hidalgo, M., Couturier, J.-L. & Leibler, L. Versatile one-pot synthesis of supramolecular plastics and self-healing rubbers. J. Am. Chem. Soc. 131, 7966–7967 (2009).

    Article  CAS  Google Scholar 

  15. Cordier, P., Tournilhac, F., Soulie-Ziakovic, C. & Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980 (2008).

    Article  CAS  Google Scholar 

  16. Syrett, J. A., Becer, C. R. & Haddleton, D. M. Self-healing and self-mendable polymers. Polym. Chem. 1, 978–987 (2010).

    Article  CAS  Google Scholar 

  17. Murphy, E. B. & Wudl, F. The world of smart healable materials. Prog. Polym. Sci. 35, 223–251 (2010).

    Article  CAS  Google Scholar 

  18. Burattini, S., Greenland, B. W., Chappell, D., Colquhoun, H. M. & Hayes, W. Healable polymeric materials: a tutorial review. Chem. Soc. Rev. 39, 1973–1985 (2010).

    Article  CAS  Google Scholar 

  19. Sottos, N. R. & Moore, J. S. Materials chemistry: spot-on healing. Nature 472, 299–300 (2011).

    Article  CAS  Google Scholar 

  20. Bergman, S. D. & Wudl, F. Mendable polymers. J. Mater. Chem. 18, 41–62 (2008).

    Article  CAS  Google Scholar 

  21. Chen, X., Wudl, F., Mal, A. K., Shen, H. & Nutt, S. R. New thermally remendable highly cross-linked polymeric materials. Macromolecules 36, 1802–1807 (2003).

    Article  CAS  Google Scholar 

  22. Ciferri, A. Bond scrambling and network elasticity. Chem. Eur. J. 15, 6920–6925 (2009).

    Article  CAS  Google Scholar 

  23. Holden, G., Kricheldorf, H. R. & Quirk, R. P. (eds) Thermoplastic Elastomers 3rd edn (Hanser, 2004).

    Google Scholar 

  24. Borisov, O. V. & Zhulina, E. B. Amphiphilic graft copolymer in a selective solvent: intramolecular structures and conformational transitions. Macromolecules 38, 2506–2514 (2005).

    Article  CAS  Google Scholar 

  25. KoSovan, P. et al. Amphiphilic graft copolymers in selective solvents: molecular dynamics simulations and scaling theory. Macromolecules 42, 6748–6760 (2009).

    Article  CAS  Google Scholar 

  26. Patten, T. E., Xia, J., Abernathy, T. & Matyjaszewski, K. Polymers with very low polydispersities from atom transfer radical polymerization. Science 272, 866–868 (1996).

    Article  CAS  Google Scholar 

  27. Burchard, W. Static and dynamic light scattering from branched polymers and biopolymers, in Light Scattering from Polymers Vol. 48, 1–124 (Springer, 1983).

    Google Scholar 

  28. Sijbesma, R. P. et al. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278, 1601–1604 (1997).

    Article  CAS  Google Scholar 

  29. Folmer, B. J. B., Sijbesma, R. P., Versteegen, R. M., van der Rijt, J. A. J. & Meijer, E. W. Supramolecular polymer materials: chain extension of telechelic polymers using a reactive hydrogen-bonding synthon. Adv. Mater. 12, 874–878 (2000).

    Article  CAS  Google Scholar 

  30. Zosel, A. & Ley, G. Influence of crosslinking on structure, mechanical properties, and strength of latex films. Macromolecules 26, 2222–2227 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the US Department of Energy, Division of Materials Sciences (award no. DE-FG02-04ER46162), corporate gifts and the University of California, Irvine. The authors thank Youli Li at the University of California, Santa Barbara, for assistance with using SAXS at the MRL Central Facilities at UC Santa Barbara supported by the MRSEC Program of the NSF (award no. DMR05-20415).

Author information

Authors and Affiliations

Authors

Contributions

Z.G., Y.C. and A.M.K. planned the experiments, Y.C., A.M.K. and G.A.W. conducted the experiments, Z.G., Y.C. and A.M.K. analysed the data, and Z.G., A.M.K., Y.C. and G.A.W. wrote the paper.

Corresponding author

Correspondence to Zhibin Guan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1214 kb)

Supplementary Movie 1

Supplementary Movie 1 (MOV 5557 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Kushner, A., Williams, G. et al. Multiphase design of autonomic self-healing thermoplastic elastomers. Nature Chem 4, 467–472 (2012). https://doi.org/10.1038/nchem.1314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1314

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing