Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quadruple bonding in C2 and analogous eight-valence electron species

Abstract

Triple bonding is conventionally considered to be the limit for multiply bonded main group elements, despite higher metal–metal bond orders being frequently observed for transition metals and lanthanides/actinides. Here, using high-level theoretical methods, we show that C2 and its isoelectronic molecules CN+, BN and CB (each having eight valence electrons) are bound by a quadruple bond. The bonding comprises not only one σ- and two π-bonds, but also one weak ‘inverted’ bond, which can be characterized by the interaction of electrons in two outwardly pointing sp hybrid orbitals. A simple way of assessing the energy of the fourth bond is proposed and is found to be ~12–17 kcal mol−1 for the isoelectronic species studied, and thus stronger than a hydrogen bond. In contrast, the analogues of C2 that contain higher-row elements, such as Si2 and Ge2, exhibit only double bonding.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representations of bonding in C2.
Figure 2: VB wavefunctions and energy terms.
Figure 3: Schematic representation of the transformation of the TC wavefunction ( equation (3)) into a GVB wavefunction.
Figure 4: Semi-localized ɸLɸR orbitals, which form the fourth bond and their overlap S values.
Figure 5: ɸLɸR GVB orbital pairs and their overlap S values for the internal bonds in C2.

Similar content being viewed by others

References

  1. Cotton, F. A. Metal–metal bonding in [Re2Xs]2− ions and other metal atom clusters. Inorg. Chem. 4, 334–336 (1965).

    Article  CAS  Google Scholar 

  2. McGrady, J. E. Electronic structure of metal–metal bonds, in Computational Inorganic and Bioinorganic Chemistry (eds Solomon, E. I., Scott, R. A. & King, R. B.) 425–431 (Wiley, 2009).

    Google Scholar 

  3. Frenking, G. Building a quintuple bond. Science 310, 796–797 (2005).

    Article  CAS  Google Scholar 

  4. Gagliardi, L. & Roos, B. O. Quantum chemical calculations show that the uranium molecule U2 has a quintuple bond. Nature 433, 848–851 (2005).

    Article  CAS  Google Scholar 

  5. Landis, C. R. & Weinhold, F. Origin of trans-bent geometries in maximally bonded transition metal and main group molecules. J. Am. Chem. Soc. 128, 7335–7345 (2006).

    Article  CAS  Google Scholar 

  6. Xu, B., Li, Q-S., Xie, Y., King, B. B. & Schafer III, H. F. Metal–metal quintuple and sextuple bonding in bent dimetallocenes of the third row transition metals. J. Chem. Theor. Comput. 6, 735–746 (2010).

    Article  CAS  Google Scholar 

  7. Tsai, Y-C. & Chang, C-C. Recent progress in the chemistry of quintuple bonds. Chem. Lett. 38, 1122–1129 (2009).

    Article  CAS  Google Scholar 

  8. Takagi, N., Krapp, A. & Frenking, G. Bonding analysis of metal–metal multiple bonds in R3M–M′R3 (M,M′=Cr,Mo,W; R=Cl,NMe2). Inorg. Chem. 50, 819–826 (2011).

    Article  CAS  Google Scholar 

  9. Fischer, R. C. & Power, P. P. π-Bonding and the lone pair effect in multiple bonds involving heavier main group elements: developments in the new millennium. Chem. Rev. 110, 3877–3923 (2010).

    Article  CAS  Google Scholar 

  10. Kravchenko, V. et al. Solid-state 29Si NMR study of RSiSiR: a tool for analyzing the nature of the Si–Si bond. J. Am. Chem. Soc. 128, 14472–14473 (2006).

    Article  CAS  Google Scholar 

  11. Schreiner, P., Reisenauer, H. P., Romanski, J. & Mloston, G. A formal carbon–sulfur triple bond: H–C≡S–O–H. Angew. Chem. Int. Ed. 48, 8133–8136 (2009).

    Article  CAS  Google Scholar 

  12. Ploshnik, E., Danovich, D., Hiberty, P. C. & Shaik, S. The nature of the idealized triple bonds between principal elements and the σ origins of trans-bent geometries—a valence bond study. J. Chem. Theor. Comput. 7, 955–968 (2011).

    Article  CAS  Google Scholar 

  13. Pease, R. N. An analysis of molecular volumes from the point of view of the Lewis–Langmuir theory of molecular structure. J. Am. Chem. Soc. 43, 991–1004 (1921).

    Article  Google Scholar 

  14. Su, P., Wu, J., Gu, J., Wu, W., Shaik, S. & Hiberty, P. C. Bonding conundrums in the C2 molecule: a valence bond study. J. Chem. Theor. Comput. 7, 121–130 (2011).

    Article  CAS  Google Scholar 

  15. Weltner, W. Jr & van Zee, R. J. Carbon molecules, ions, and clusters. Chem. Rev. 89, 1713–1747 (1989).

    Article  CAS  Google Scholar 

  16. Boggio-Pasqua, M., Voronin, A. I., Halvick, P. & Rayez, J-C. Analytical representations of high level ab initio potential energy curves of the C2 molecule. J. Mol. Struct. 531, 159–167 (2000).

    Article  CAS  Google Scholar 

  17. Abrams, M. L. & Sherrill, C. D. Full configuration interaction potential energy curves for the X1Σg+, B1Δg, and B1Σg+ states of C2: a challenge for approximate methods. J. Chem. Phys. 121, 9211–9219 (2004).

    Article  CAS  Google Scholar 

  18. Sherrill, C. D. & Piecuch, P. The X1Σg+, B1Δg, and B1Σg+ states of C2: a comparison of renormalized coupled-cluster and multireference methods with full configuration interaction benchmarks. J. Chem. Phys. 122, 124104 (2005).

    Article  Google Scholar 

  19. Pradhan, A. D., Partridge, H. & Bauschlicher, C. W. Jr. The dissociation energy of CN and C2 . J. Chem. Phys. 101, 3857–3861 (1994).

    Article  CAS  Google Scholar 

  20. Peterson, K. A. Accurate multireference configuration interaction calculations on the lowest 1Σ+ and 3Π electronic states of C2, CN+, BN, and BO+. J. Chem. Phys. 102, 262–277 (1995).

    Article  CAS  Google Scholar 

  21. Varandas, A. J. C. Extrapolation to the complete-basis-set limit and the implications of the avoided crossings: the X1Σg+, B1Δg, and B1Σg+ states of C2 . J. Chem. Phys. 129, 234103 (2008).

    Article  CAS  Google Scholar 

  22. Leininger, M. L., Sherrill, C. D., Allen, W. D. & Schaefer, III H. F. Benchmark configuration interaction spectroscopic constants for X1Σg+ C2 and X1Σ+ CN+. J. Chem. Phys. 108, 6717–6721 (1998).

    Article  CAS  Google Scholar 

  23. Levine, I. N. Quantum Chemistry, 2nd edn, 321, table 13.2 (Allyn and Bacon, 1974).

    Google Scholar 

  24. Wu, W., Gu, J., Song, J., Shaik, S. & Hiberty, P. C. The ‘inverted’ bond in [1.1.1] propellane is a charge-shift bond. Angew. Chem. Int. Ed. 48, 1407–1410 (2009).

    Article  CAS  Google Scholar 

  25. Leninger, M. L., Allen, W. D., Schaefer, III H. F. & Sherrill, C. D. Is Møller–Plesset perturbation theory a convergent ab initio method? J. Chem. Phys. 112, 9213–9222 (2000).

    Article  Google Scholar 

  26. Shaik, S. S. & Hiberty, P. C. A Chemist's Guide to Valence Bond Theory, 49–51 (John-Wiley & Sons, 2008).

    Google Scholar 

  27. Shaik, S., Danovich, D., Wu, W. & Hiberty, P. C. Charge-shift bonding and its manifestations in chemistry. Nature Chem. 1, 443–449 (2009).

    Article  CAS  Google Scholar 

  28. Shaik, S. S. A qualitative valence bond approach to organic reactions, in New Theoretical Concepts for Understanding Organic Reactions (eds Bertran, J. & Csizmadia, G. I.) NATO ASI Series C267 (Kluwer Publishers, 1989).

    Google Scholar 

  29. Shaik, S. Valence bond all the way: from the degenerate hydrogen exchange to cytochrome P450. Phys. Chem. Chem. Phys. 12, 8706–8720 (2010).

    Article  CAS  Google Scholar 

  30. Lein, M., Krapp, A. & Frenking, G. Why do heavy-atom analogs of acetylene E2H2 (E=Si–Pb) exhibit unusual structures? J. Am. Chem. Soc. 127, 6290–6299 (2005).

    Article  CAS  Google Scholar 

  31. Trinquier, G. & Malrieu, J. P. Nonclassical distortions at multiple bonds. J. Am. Chem. Soc. 109, 5303–5315 (1987).

    Article  CAS  Google Scholar 

  32. Carter, E. A. & Goddard, W. A. Relation between singlet–triplet gaps and bond energies. J. Phys. Chem. 90, 998–1001 (1986).

    Article  CAS  Google Scholar 

  33. Sugiyama, Y. et al. Synthesis and properties of a new kinetically stabilized digermyne: new insights for a germanium analogue of an alkyne. J. Am. Chem. Soc. 128, 1023–1031 (2005).

    Article  Google Scholar 

  34. Huber, P. K. & Herzberg, G. Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (Van-Nostrand-Reinhold, 1979).

    Book  Google Scholar 

  35. Moore, C. E. Atomic Energy Levels, Vol. I (Hydrogen through Vanadium), Circular of the National Bureau of Standards 467 (US Government Printing Office, 1949).

    Google Scholar 

  36. Ojha, K. S. & Gopal, R. Laser produced spectrum of Si2 molecule in the region of 540–1010 nm. Spectrochimica Acta Part A 71, 1003–1006 (2008).

    Article  CAS  Google Scholar 

  37. Bauschlicher, C. W. Jr & Langhoff, S. R. Ab initio calculations on C2, Si2, and SiC. J. Chem. Phys. 87, 2919–2924 (1987).

    Article  CAS  Google Scholar 

  38. Karni, M. et al. HCSiF and HCSiCl: the first detection of molecules with formal CSi triple bonds. Angew. Chem. Int. Ed. 38, 332–335 (1999).

    Article  CAS  Google Scholar 

  39. Kutzelnigg, W. Chemical bonding in higher main group elements. Angew. Chem. Int. Ed. Engl. 23, 272–295 (1984).

    Article  Google Scholar 

  40. Frenking, G. & von Hopffgarten, M. Calculation of bonding properties, in Computational Bioinorganic and Inorganic Chemistry (eds, Solomon, E. I., Scott, R. A. & King, R. B.) 3–15 (John Wiley & Sons, 2009).

    Google Scholar 

  41. West, R. Chemistry of the silicon–silicon double bond. Angew. Chem. Int. Ed. Engl. 26, 1201–1211 (1987).

    Article  Google Scholar 

  42. Müller, T., Dallos, M., Lischka, H., Dubrovay, Z. & Szalay, P. G. A systematic theoretical investigation of the valence excited states of the diatomic molecules B2, C2, N2 and O2 . Theor. Chem. Acc. 105, 227–243 (2001).

    Article  Google Scholar 

  43. Karton, A. & Martin, J. M. L. The lowest singlet–triplet excitation energy of BN: a converged coupled cluster perspective. J. Chem. Phys. 125, 144313 (2006).

    Article  Google Scholar 

  44. Oncak, M. & Srnec, M. Electronic structure and physical properties of MiXi clusters (M=B,Al; X=N,P; i=1, 2, 3): ab initio study. J. Comput. Chem. 29, 233–246 (2008).

    Article  CAS  Google Scholar 

  45. Li, X. Z. & Paldus, J. Singlet–triplet separation in BN and C2: simple yet exceptional systems for advanced correlated methods. Chem. Phys. Lett. 431, 179–184 (2006).

    Article  CAS  Google Scholar 

  46. Asmis, K. R., Taylor, T. R. & Neumark, D. M. Anion photoelectron spectroscopy of BN. Chem. Phys. Lett. 295, 75–81 (1998).

    Article  CAS  Google Scholar 

  47. Tzeli, D. & Mavridis, A. First-principles investigation of the boron and aluminum carbides BC and AlC and their anions BC and AlC. 1. J. Phys. Chem. A 105, 1175–1184 (2001).

    Article  CAS  Google Scholar 

  48. Grimme, S. Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 124, 034108 (2006).

    Article  Google Scholar 

  49. Brandhorst, K. & Grunenberg, J. How strong is it? The interpretation of force and compliance constants as bond strength descriptors. Chem. Soc. Rev. 37, 1558–1567 (2008).

    Article  CAS  Google Scholar 

  50. Coulson, C. A. & Fischer, I. Notes on the molecular orbital treatment of the hydrogen molecule. Phil. Mag. Series 7 40, 386–393 (1949).

    Article  CAS  Google Scholar 

  51. Goddard III, W. A. & Harding, L. B. The description of chemical bonding from ab initio calculations. Annu. Rev. Phys. Chem. 29, 363–396 (1978).

    Article  CAS  Google Scholar 

  52. Werner, H-J. et al. MOLPRO, version 2010.1 (University College Cardiff Consultants Limited, UK).

  53. Brandhorst, K. & Grunenberg, J. Efficient computation of compliance matrices in redundant internal coordinates from cartesian hessians for nonstationary points. J. Chem. Phys. 132, 184101 (2010).

    Article  Google Scholar 

  54. Song, L., Wu, W., Mo, Y. & Zhang, Q. XMVB: an ab initio non-orthogonal valence bond program (Xiamen University, China, 2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.S. designed the project, analysed the FCI wavefunctions and wrote the paper. D.D. performed the VB, MRCI, FCI and bond order calculations. W.W. designed the initial VB calculations of C2. P.S. performed the initial set of VB calculations for C2. P.C.H. participated in the design of the VB determination of Din, in the analysis of the FCI wavefunctions, and contributed to writing the manuscript. H.R. initiated interest in the problem14, and explored probes for characterizing the bonding properties.

Corresponding author

Correspondence to Sason Shaik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2145 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaik, S., Danovich, D., Wu, W. et al. Quadruple bonding in C2 and analogous eight-valence electron species. Nature Chem 4, 195–200 (2012). https://doi.org/10.1038/nchem.1263

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1263

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing