Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chiral information harvesting in dendritic metallopeptides

Abstract

Long-range communication of stereochemical information is common in biological systems, particularly in enzyme-catalysed reactions. Here, we report the remote control of the dynamic chirality of metal centres, coordinated by 2,2′-bipyridine ligands bearing dynamic helical oligopeptides. The helical chirality of the oligopeptides is controlled by a stereocentre remote from the metal. We show that when a mixture of chiral and achiral peptide ligands is used, both the chirality of the metal centre and that of the achiral oligopeptide helices are significantly amplified. The amplification mechanism relies on several steps of chirality induction, first from a single chiral peptide to the helicity of an oligopeptide through the induction of propeller chirality at the metal centre, then on to induction of helical chirality in an achiral oligopeptide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chiral information-harvesting in dendritic metallopeptides.
Figure 2: Remote stereocontrol of the metal chirality.
Figure 3: Circular dichroism and absorption spectra of C3, C4 and C5.
Figure 4: Top (left, from Cl–Fe–Cl axis) and side (right) views of the crystal structure of the Δ-isomer of C3 with Cl2 (Δ-[Fe(3)3]Cl2).
Figure 5: Chiral amplification at the metal centre and in the peptide helices.

Similar content being viewed by others

References

  1. Rebek, J. Jr Simultaneous encapsulation: molecules held at close range. Angew. Chem. Int. Ed. 44, 2068–2078 (2005).

    Article  CAS  Google Scholar 

  2. Caulder, D. L. & Raymond, K. N. Supermolecules by design. Acc. Chem. Res. 32, 975–982 (1999).

    Article  CAS  Google Scholar 

  3. Fujita, M., Tominaga, M., Hori, A. & Therrien, B. Coordination assemblies from a Pd(II)-cornered square complex. Acc. Chem. Res. 38, 369–378 (2005).

    Article  CAS  Google Scholar 

  4. Mateos-Timoneda, M. A., Crego-Calama, M. & Reinhoudt, D. N. Supramolecular chirality of self-assembled systems in solution. Chem. Soc. Rev. 33, 363–372 (2004).

    Article  CAS  Google Scholar 

  5. Lehn, J. M. Supramolecular Chemistry: Concepts and Perspectives (VCH, 1995).

  6. Albrecht, M. ‘Let's twist again’—double-stranded, triple-stranded, and circular helicates. Chem. Rev. 101, 3457–3497 (2001).

    Article  CAS  Google Scholar 

  7. Palmans, A. R. A. & Meijer, E. W. Amplification of chirality in dynamic supramolecular aggregates. Angew. Chem. Int. Ed. 46, 8948–8968 (2007).

    Article  CAS  Google Scholar 

  8. Pijper, D. & Feringa, B. L. Control of dynamic helicity at the macro- and supramolecular level. Soft Matter 4, 1349–1372 (2008).

    Article  CAS  Google Scholar 

  9. Stang, P. J., Olenyuk, B., Muddiman, D. C. & Smith R. D. Transition-metal-mediated rational design and self-assembly of chiral, nanoscale supramolecular polyhedra with unique T symmetry. Organometallics 16, 3094–3096 (1997).

    Article  CAS  Google Scholar 

  10. Werner, A. Zur kenntnis des asymmetrischen kobaltatoms. I. Chem. Ber. 44, 1887–1898 (1911).

    Article  CAS  Google Scholar 

  11. Knof, U. & von Zelewsky, A. Predetermined chirality at metal center. Angew. Chem. Int. Ed. 38, 302–322 (1999).

    Article  Google Scholar 

  12. Mizuno, T., Takeuchi, M., Hamachi, I., Nakashima, K. & Shinkai, S. Chiroselective transcription of the sugar structure to Δ- or Λ-[CoIII(bpy)3]3+ using a boronic acid–sugar template interaction. Chem. Commun. 1793–1794 (1997).

  13. Telfer, S. G., Bernardinelli, G. & Williams, A. F. Diastereospecific synthesis of amino acid substituted 2,2′-bipyridyl complexes. Chem. Commun. 1498–1499 (2001).

  14. Inai, Y. et al. Induction of one-handed helical screw sense in achiral peptide through the domino effect based on interacting its N-terminal amino group with chiral carboxylic acid. J. Am. Chem. Soc. 122, 11731–17732 (2000).

    Article  CAS  Google Scholar 

  15. Inai, Y. et al. Noncovalent domino effect on helical screw sense of chiral peptides possessing C-terminal chiral residue. J. Am. Chem. Soc. 124, 2466–2473 (2002).

    Article  CAS  Google Scholar 

  16. Ousaka, N., Inai, Y. & Kuroda, R. Chain-terminus triggered chiral memory in an optically inactive 310-helical peptide. J. Am. Chem. Soc. 130, 12266–12267 (2008).

    Article  CAS  Google Scholar 

  17. Ousaka, N. & Inai, Y. Transfer of noncovalent chiral information along an optically inactive helical peptide chain: allosteric control of asymmetry of the C-terminal site by external molecule that binds to the N-terminal site. J. Org. Chem. 74, 1429–1439 (2009).

    Article  CAS  Google Scholar 

  18. Inai, Y., Komori, H. & Ousaka, N. Control of helix sense in protein-mimicking backbone by the noncovalent chiral effect. Chem. Rec. 7, 191–202 (2007).

    Article  CAS  Google Scholar 

  19. Mazaleyrat, J.-P. et al. Induced axial chirality in the biphenyl core of the Ca-tetrasubstituted α-amino acid residue Bip and subsequent propagation of chirality in (Bip)n/Val oligopeptides. J. Am. Chem. Soc. 126, 12874–12879 (2004).

    Article  CAS  Google Scholar 

  20. Clayden, J., Lund, A., Vallverdú, L. & Helliwell, M. Ultra-remote stereocontrol by conformational communication of information along a carbon chain. Nature 431, 966–971 (2004).

    Article  CAS  Google Scholar 

  21. Clayden, J., Castellanos, A., Solà, J. & Morris, G. A. Quantifying end-to-end conformational communication of chirality through an achiral peptide chain. Angew. Chem. Int. Ed. 48, 5962–5965 (2009).

    Article  CAS  Google Scholar 

  22. Solà, J., Helliwell, M. & Clayden, J. N- versus C-terminal control over the screw-sense preference of the configurationally achiral, conformationally helical peptide motif Aib8GlyAib8 . J. Am. Chem. Soc. 132, 4548–4549 (2010).

    Article  Google Scholar 

  23. Clayden, J. Transmission of stereochemical information over nanometre distances in chemical reactions. Chem. Soc. Rev. 38, 817–829 (2009).

    Article  CAS  Google Scholar 

  24. Okamoto, Y., Matsuda, M., Nakano, T. & Yashima, E. Asymmetric polymerization of isocyanates with optically active anionic initiators. Polym. J. 25, 391–396 (1993).

    Article  CAS  Google Scholar 

  25. Pijper, D. & Feringa, B. L. Molecular transmission: controlling the twist sense of a helical polymer with a single light-driven molecular motor. Angew. Chem. Int. Ed. 46, 3693–3696 (2007).

    Article  CAS  Google Scholar 

  26. Dolain, C., Jiang, H., Leger, J.-M., Guionneau, P. & Huc, I. Chiral induction in quinoline-derived oligoamide foldamers: assignment of helical handedness and role of steric effects. J. Am. Chem. Soc. 127, 12943–12951 (2005).

    Article  CAS  Google Scholar 

  27. Kamikawa, K. et al. Induction of one-handed helical oligo(p-benzamide)s by domino effect based on planar-axial-helical chirality relay. Chem. Commun. 1201–1203 (2009).

  28. Karle, I. L. & Balaram, P. Structural characteristics of α-helical peptide molecules containing Aib residues. Biochemistry 29, 6747–6756 (1990).

    Article  CAS  Google Scholar 

  29. Toniolo, C. & Benedetti, E. The polypeptide 310-helix. Trends Biochem. Sci. 16, 350–353 (1991).

    Article  CAS  Google Scholar 

  30. Paul, P. K. C. et al. Stereochemically constrained peptides. Theoretical and experimental studies on the conformations of peptides containing 1-aminocyclohexanecarboxylic acid. J. Am. Chem. Soc. 108, 6363–6370 (1986).

    Article  CAS  Google Scholar 

  31. Pengo, B. et al. Linear oligopeptides. Part 406. Helical screw sense of peptide molecules: the pentapeptide system (Aib)4/L-Val[L-(αMe)Val] in solution. J. Chem. Soc. Perkin Trans. 2, 1651–1657 (1998).

  32. Hirschberg, J. H. K. K. et al. Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs. Nature 407, 167–170 (2000).

    Article  CAS  Google Scholar 

  33. Green, M. M. et al. A helical polymer with a cooperative response to chiral information. Science 268, 1860–1866 (1995).

    Article  CAS  Google Scholar 

  34. Yashima, E., Maeda, K., Iida, H., Furusho, Y. & Nagai, K. Helical polymers: synthesis, structures, and functions. Chem. Rev. 109, 6102–6211 (2009).

    Article  CAS  Google Scholar 

  35. Cornelissen, J. J. L. M., Rowan, A. E., Nolte, R. J. M. & Sommerdijk, N. A. J. M. Chiral architectures from macromolecular building blocks. Chem. Rev. 101, 4039–4070 (2001).

    Article  CAS  Google Scholar 

  36. Fujiki, M. Optically active polysilylenes: state-of-the-art chiroptical polymers. Macromol. Rapid Commun. 22, 539–563 (2001).

    Article  CAS  Google Scholar 

  37. Mateos-Timoneda, M. A., Crego-Calama, M. & Reinhoudt, D. N. Controlling the amplification of chirality in hydrogen-bonded assemblies. Supramol. Chem. 17, 67–79 (2005).

    Article  CAS  Google Scholar 

  38. Rudick, J. G. & Percec, V. Helical chirality in dendronized polyarylacetylenes. New J. Chem. 31, 1083–1096 (2007).

    Article  CAS  Google Scholar 

  39. Ziegler, M. & von Zelewsky, A. Charge-transfer excited state properties of chiral transition metal coordination compounds studied by chiroptical spectroscopy. Coord. Chem. Rev. 177, 257–300 (1998).

    Article  CAS  Google Scholar 

  40. Ahn, D.-R., Kim, T. W. & Hong, J.-I. Induction of diastereoselectivity in Fe(II) tris(amino acid-bipyridine) complexes. J. Org. Chem. 66, 5008–5011 (2001).

    Article  CAS  Google Scholar 

  41. Constable, E. C., Frantz, R., Housecroft, C. E., Lacour, J. & Mahmood, A. Chiral induction in a ribose-decorated metallostar through intrinsic and interionic diastereomeric interactions. Inorg. Chem. 43, 4817–4819 (2004).

    Article  CAS  Google Scholar 

  42. Drahoňovský, D. et al. Stereoselectivity in the formation of tris-diimine complexes of Fe(II), Ru(II), and Os(II) with a C2-symmetric chiral derivative of 2,2′-bipyridine. Dalton Trans. 1444–1454 (2006).

  43. Kopple, K. D. & Schamper, T. J. Proton magnetic resonance line broadening produced by association with a nitroxide radical in studies of amide and peptide conformation. J. Am. Chem. Soc. 94, 3644–3646 (1972).

    Article  CAS  Google Scholar 

  44. Toniolo, C., Formaggio, F., Crisma, M., Schoemaker, H. S. & Kamphuis, J. The p-bromobenzamido chromophore as a circular dichroic probe for the assignment of the screw sense of helical peptides. Tetrahedron Asymm. 5, 507–510 (1994).

    Article  CAS  Google Scholar 

  45. Wüthrich, K. NMR of Proteins and Nucleic Acids (John Wiley & Sons, 1986).

    Book  Google Scholar 

  46. Uppadine, L. H., Drew, M. G. B. & Beer, P. D. Anion selective properties of ruthenium(II) tris(5,5′-diamide-2,2′-bipyridine) receptors dictated by solvent and amide substituent. Chem. Commun. 291–292 (2001).

  47. Inai, Y., Ousaka, N. & Okabe, T. Mechanism for the noncovalent domino effect: new paradigm for the chiral role of the N-terminal segment in a 310-helix. J. Am. Chem. Soc. 125, 8151–8162 (2003).

    Article  CAS  Google Scholar 

  48. Jaun, B. et al. Studies on the conformation of Boc-protected (S)-(+)-isovaline homopeptide methyl esters in the solid state and in solution. Liebigs Ann. Recueil 1697–1710 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research (S) from the Japan Society for the Promotion of Science (JSPS) (no. 20225006) and the Global COE Program ‘Elucidation and Design of Materials and Molecular Functions’ of the Ministry of Education, Culture, Sports, Science, and Technology, Japan. N.O. expresses thanks for a JSPS Postdoctoral Fellowship for Young Scientists (no. 2692). The authors thank K. Yoza and Y. Furusho for their help with X-ray crystallographic analysis.

Author information

Authors and Affiliations

Authors

Contributions

E.Y. designed and directed the project. N.O. conceived and designed the experiments. N.O., Y.T. and H.I. performed the experiments. E.Y. and N.O. analysed the data and co-wrote the paper.

Corresponding author

Correspondence to Eiji Yashima.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6459 kb)

Supplementary information

Crystallographic data for Fe(Ligand3)3Cl2 (CIF 154 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ousaka, N., Takeyama, Y., Iida, H. et al. Chiral information harvesting in dendritic metallopeptides. Nature Chem 3, 856–861 (2011). https://doi.org/10.1038/nchem.1146

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1146

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing