Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel

Abstract

Replicating the multi-hierarchical self-assembly of collagen has long-attracted scientists, from both the perspective of the fundamental science of supramolecular chemistry and that of potential biomedical applications in tissue engineering. Many approaches to drive the self-assembly of synthetic systems through the same steps as those of natural collagen (peptide chain to triple helix to nanofibres and, finally, to a hydrogel) are partially successful, but none simultaneously demonstrate all the levels of structural assembly. Here we describe a peptide that replicates the self-assembly of collagen through each of these steps. The peptide features collagen's characteristic proline–hydroxyproline–glycine repeating unit, complemented by designed salt-bridged hydrogen bonds between lysine and aspartate to stabilize the triple helix in a sticky-ended assembly. This assembly is propagated into nanofibres with characteristic triple helical packing and lengths with a lower bound of several hundred nanometres. These nanofibres form a hydrogel that is degraded by collagenase at a similar rate to that of natural collagen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Self-assembly of collagen type I compared to that of collagen mimetic peptides.
Figure 2: Models of electrostatic interactions between charged amino acids in collagen mimetic peptides.
Figure 3: Spectroscopy graphs illustrating the triple helical nature of the designed collagen mimetic peptide.
Figure 4: Microscopy images of (Pro-Lys-Gly)4(Pro-Hyp-Gly)4(Asp-Hyp-Gly)4 that show the fibrillar assembly of the system in phosphate buffer.
Figure 5: Rheology of the collagen-like peptide that demonstrates the temperature-dependent strength of the hydrogel.
Figure 6: Proposed mechanism of fibre self-assembly.

Similar content being viewed by others

References

  1. Ottani, V., Martini, D., Franchi, M., Ruggeri, A. & Raspanti, M. Hierarchical structures in fibrillar collagens. Micron 33, 587–596 (2002).

    Article  CAS  Google Scholar 

  2. Ottani, V., Raspanti, M. & Ruggeri, A. Collagen structure and functional implications. Micron 32, 251–260 (2001).

    Article  CAS  Google Scholar 

  3. Pinkas, D. M., Ding, S., Raines, R. T. & Barron, A. E. Tunable, post-translational hydroxylation of collagen domains in Escherichia coli. ACS Chem. Biol. 6, 320–324 (2011).

    Article  CAS  Google Scholar 

  4. Buechter, D. D. et al. Co-translational incorporation of trans-4-hydroxyproline into recombinant proteins in bacteria. J. Biol. Chem. 278, 645–650 (2003).

    Article  CAS  Google Scholar 

  5. Kohrer, C., Xie, L., Kellerer, S., Varshney, U. & Rajbhandary, U. L. Import of amber and ochre suppressor tRNAs into mammalian cells: a general approach to site-specific insertion of amino acid analogues into proteins. Proc. Natl Acad. Sci. USA 98, 14310–14315 (2001).

    Article  CAS  Google Scholar 

  6. Liu, D. R., Magliery, T. J., Pasternak, M. & Schultz, P. G. Engineering a tRNA and aminoacyl–tRNA synthetase for the site-specific incorporation of unnatural amino acids into proteins in vivo. Proc. Natl Acad. Sci. USA 94, 10092–10097 (1997).

    Article  CAS  Google Scholar 

  7. Liu, D. R. & Schultz, P. G. Progress toward the evolution of an organism with an expanded genetic code. Proc. Natl Acad. Sci. USA 96, 4780–4785 (1999).

    Article  CAS  Google Scholar 

  8. Mendel, D., Cornish, V. W. & Schultz, P. G. Site-directed mutagenesis with an expanded genetic-code. Annu. Rev. Biophys. Biomol. Struct. 24, 435–462 (1995).

    Article  CAS  Google Scholar 

  9. Boudko, S. P. et al. Crystal structure of human type III collagen Gly991-Gly1032 cystine knot-containing peptide shows both 7/2 and 10/3 triple helical symmetries. J. Biol. Chem. 283, 32580–32589 (2008).

    Article  CAS  Google Scholar 

  10. Kar, K. et al. Aromatic interactions promote self-association of collagen triple-helical peptides to higher-order structures. Biochemistry 48, 7959–7968 (2009).

    Article  CAS  Google Scholar 

  11. Kramer, R. Z., Bella, J., Brodsky, B. & Berman, H. M. The crystal and molecular structure of a collagen-like peptide with a biologically relevant sequence. J. Mol. Biol. 311, 131–147 (2001).

    Article  CAS  Google Scholar 

  12. Krishna, O. D. & Kiick, K. L. Supramolecular assembly of electrostatically stabilized, hydroxyproline-lacking collagen-mimetic peptides. Biomacromolecules 10, 2626–2631 (2009).

    Article  CAS  Google Scholar 

  13. Persikov, A. V., Ramshaw, J. A., Kirkpatrick, A. & Brodsky, B. Amino acid propensities for the collagen triple-helix. Biochemistry 39, 14960–14967 (2000).

    Article  CAS  Google Scholar 

  14. Persikov, A. V., Ramshaw, J. A. M., Kirkpatrick, A. & Brodsky, B. Electrostatic interactions involving lysine make major contributions to collagen triple-helix stability. Biochemistry 44, 1414–1422 (2005).

    Article  CAS  Google Scholar 

  15. Sakakibara, S. et al. Synthesis of (Pro-Hyp-Gly)n of defined molecular-weights – evidence for stabilization of collagen triple helix by hydroxyproline. Biochim. Biophys. Acta 303, 198–202 (1973).

    Article  CAS  Google Scholar 

  16. Shah, N. K., Ramshaw, J. A., Kirkpatrick, A., Shah, C. & Brodsky, B. A host–guest set of triple-helical peptides: stability of Gly-X-Y triplets containing common nonpolar residues. Biochemistry 35, 10262–10268 (1996).

    Article  CAS  Google Scholar 

  17. Venugopal, M. G., Ramshaw, J. A., Braswell, E., Zhu, D. & Brodsky, B. Electrostatic interactions in collagen-like triple-helical peptides. Biochemistry 33, 7948–7956 (1994).

    Article  CAS  Google Scholar 

  18. Fallas, J. A., Gauba, V. & Hartgerink, J. D. Solution structure of an ABC collagen heterotrimer reveals a single-register helix stabilized by electrostatic interactions. J. Biol. Chem. 284, 26851–26859 (2009).

    Article  CAS  Google Scholar 

  19. Gauba, V. & Hartgerink, J. D. Self-assembled heterotrimeric collagen triple helices directed through electrostatic interactions. J. Am. Chem. Soc. 129, 2683–2690 (2007).

    Article  CAS  Google Scholar 

  20. Gauba, V. & Hartgerink, J. D. Surprisingly high stability of collagen ABC heterotrimer: evaluation of side chain charge pairs. J. Am. Chem. Soc. 129, 15034–15041 (2007).

    Article  CAS  Google Scholar 

  21. Gauba, V. & Hartgerink, J. D. Synthetic collagen heterotrimers: structural mimics of wild type and mutant collagen type I. J. Am. Chem. Soc. 130, 7509–7515 (2008).

    Article  CAS  Google Scholar 

  22. Madhan, B., Xiao, J. X., Thiagarajan, G., Baum, J. & Brodsky, B. NMR monitoring of chain-specific stability in heterotrimeric collagen peptides. J. Am. Chem. Soc. 130, 13520–13521 (2008).

    Article  CAS  Google Scholar 

  23. Ottl, J. et al. Design and synthesis of heterotrimeric collagen peptides with a built-in cystine-knot. Models for collagen catabolism by matrix-metalloproteases. FEBS Lett. 398, 31–36 (1996).

    Article  CAS  Google Scholar 

  24. Russell, L. E., Fallas, J. A. & Hartgerink, J. D. Selective assembly of a high stability AAB collagen heterotrimer. J. Am. Chem. Soc. 132, 3242–3243 (2010).

    Article  CAS  Google Scholar 

  25. Cejas, M. A. et al. Thrombogenic collagen-mimetic peptides: self-assembly of triple helix-based fibrils driven by hydrophobic interactions. Proc. Natl Acad. Sci. USA 105, 8513–8518 (2008).

    Article  CAS  Google Scholar 

  26. Kar, K. et al. Self-association of collagen triple helix peptides into higher order structures. J. Biol. Chem. 281, 33283–33290 (2006).

    Article  CAS  Google Scholar 

  27. Kar, K., Wang, Y. H. & Brodsky, B. Sequence dependence of kinetics and morphology of collagen model peptide self-assembly into higher order structures. Protein Sci. 17, 1086–1095 (2008).

    Article  CAS  Google Scholar 

  28. Kotch, F. W. & Raines, R. T. Self-assembly of synthetic collagen triple helices. Proc. Natl Acad. Sci. USA 103, 3028–3033 (2006).

    Article  CAS  Google Scholar 

  29. Paramonov, S. E., Gauba, V. & Hartgerink, J. D. Synthesis of collagen-like peptide polymers by native chemical ligation. Macromolecules 38, 7555–7561 (2005).

    Article  CAS  Google Scholar 

  30. Yamazaki, C. M., Asada, S., Kitagawa, K. & Koide, T. Artificial collagen gels via self-assembly of de novo designed peptides. Biopolymers 90, 816–823 (2008).

    Article  CAS  Google Scholar 

  31. Skrzeszewska, P. J. et al. Physical gels of telechelic triblock copolymers with precisely defined junction multiplicity. Soft Matter 5, 2057–2062 (2009).

    Article  CAS  Google Scholar 

  32. Rele, S. et al. D-periodic collagen-mimetic microfibers. J. Am. Chem. Soc. 129, 14780–14787 (2007).

    Article  CAS  Google Scholar 

  33. Banwell, E. F. et al. Rational design and application of responsive alpha-helical peptide hydrogels. Nature Mater. 8, 596–600 (2009).

    Article  CAS  Google Scholar 

  34. Yang, Y. L., Leone, L. M. & Kaufman, L. J. Elastic moduli of collagen gels can be predicted from two-dimensional confocal microscopy. Biophys. J. 97, 2051–2060 (2009).

    Article  CAS  Google Scholar 

  35. Mi, K. et al. Influence of a self-assembling peptide, RADA16, compared with collagen I and Matrigel on the malignant phenotype of human breast cancer cells in 3D cultures and in vivo. Macromol. Biosci. 9, 437–443 (2009).

    Article  CAS  Google Scholar 

  36. Greenfield, M. A., Hoffman, J. R., de la Cruz, M. O. & Stupp, S. I. Tunable mechanics of peptide nanofiber gels. Langmuir 26, 3641–3647 (2010).

    Article  CAS  Google Scholar 

  37. Yokoi, H., Kinoshita, T. & Zhang, S. Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proc. Natl Acad. Sci. USA 102, 8414–8419 (2005).

    Article  CAS  Google Scholar 

  38. Zhang, S. G. et al. Self-complementary oligopeptide matrices support mammalian-cell attachment. Biomaterials 16, 1385–1393 (1995).

    Article  Google Scholar 

  39. Lamm, M. S., Rajagopal, K., Schneider, J. P. & Pochan, D. J. Laminated morphology of nontwisting beta-sheet fibrils constructed via peptide self-assembly. J. Am. Chem. Soc. 127, 16692–16700 (2005).

    Article  CAS  Google Scholar 

  40. Ozbas, B., Kretsinger, J., Rajagopal, K., Schneider, J. P. & Pochan, D. J. Salt-triggered peptide folding and consequent self-assembly into hydrogels with tunable modulus. Macromolecules 37, 7331–7337 (2004).

    Article  CAS  Google Scholar 

  41. Aulisa, L., Dong, H. & Hartgerink, J. D. Self-assembly of multidomain peptides: sequence variation allows control over cross-linking and viscoelasticity. Biomacromolecules 10, 2694–2698 (2009).

    Article  CAS  Google Scholar 

  42. Ottl, J. et al. Recognition and catabolism of synthetic heterotrimeric collagen peptides by matrix metalloproteinases. Chem. Biol. 7, 119–132 (2000).

    Article  CAS  Google Scholar 

  43. Serpell, L. C., Fraser, P. E. & Sunde, M. X-ray fiber diffraction of amyloid fibrils. Methods Enzymol. 309, 526–536 (1999).

    Article  CAS  Google Scholar 

  44. Okuyama, K. Revisiting the molecular structure of collagen. Connect. Tissue Res. 49, 299–310 (2008).

    Article  CAS  Google Scholar 

  45. Pandya, M. J. et al. Sticky-end assembly of a designed peptide fiber provides insight into protein fibrillogenesis. Biochemistry 39, 8728–8734 (2000).

    Article  CAS  Google Scholar 

  46. Woolfson, D. N. Building fibrous biomaterials from alpha-helical and collagen-like coiled-coil peptides. Biopolymers 94, 118–127 (2010).

    Article  CAS  Google Scholar 

  47. Bella, J., Eaton, M., Brodsky, B. & Berman, H. M. Crystal and molecular structure of a collagen-like peptide at 1.9 Å resolution. Science 266, 75–81 (1994).

    Article  CAS  Google Scholar 

  48. Okuyama, K., Okuyama, K., Arnott, S., Takayanagi, M. & Kakudo, M. Crystal and molecular structure of a collagen-like polypeptide (Pro-Pro-Gly)10 . J. Mol. Biol. 152, 427–443 (1981).

    Article  CAS  Google Scholar 

  49. Pauling, L. & Corey, R. B. The structure of fibrous protein of the collagen-gelatin group. Proc. Natl Acad. Sci. USA 37, 272–281 (1951).

    Article  CAS  Google Scholar 

  50. Ramachandra, G. N. & Kartha, G. Structure of collagen. Nature 176, 593–595 (1955).

    Article  Google Scholar 

  51. Ramachandran, G. N. & Kartha, G. Structure of collagen. Nature 174, 269–270 (1954).

    Article  CAS  Google Scholar 

  52. Rich, A. & Crick, F. H. C. Molecular structure of collagen. J. Mol. Biol. 3, 483–506 (1961).

    Article  CAS  Google Scholar 

  53. Ruozi, B., Tosi, G., Leo, E. & Vandelli, M. A. Application of atomic force microscopy to characterize liposomes as drug and gene carriers. Talanta 73, 12–22 (2007).

    Article  CAS  Google Scholar 

  54. Wess, T. J., Hammersley, A., Wess, L. & Miller, A. Type-I collagen packing, conformation of the triclinic unit-cell. J. Mol. Biol. 248, 487–493 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded in part by National Science Foundation CAREER Award (DMR-0645474), the Robert A. Welch Foundation (Grant No. C1557) and the Norman Hackerman Advanced Research Program of Texas.

Author information

Authors and Affiliations

Authors

Contributions

L.E.R.O. designed and performed the experiments (except SEM and fibre diffraction) and co-wrote the manuscript. J.A.F. performed and analysed fibre-diffraction experiments. E.L.B. performed the SEM experiments. M.K.K. performed the collagenase experiments. J.D.H. supervised the research, evaluated all the data and co-wrote the manuscript.

Corresponding author

Correspondence to Jeffrey D. Hartgerink.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1588 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Leary, L., Fallas, J., Bakota, E. et al. Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel. Nature Chem 3, 821–828 (2011). https://doi.org/10.1038/nchem.1123

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1123

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing