Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of 3-O-sulfonated heparan sulfate octasaccharides that inhibit the herpes simplex virus type 1 host–cell interaction

Abstract

Cell surface carbohydrates play significant roles in a number of biologically important processes. Heparan sulfate, for instance, is a ubiquitously distributed polysulfated polysaccharide that is involved, among other things, in the initial step of herpes simplex virus type 1 (HSV-1) infection. The virus interacts with cell-surface heparan sulfate to facilitate host-cell attachment and entry. 3-O-Sulfonated heparan sulfate has been found to function as an HSV-1 entry receptor. Achieving a complete understanding of these interactions requires the chemical synthesis of such oligosaccharides, but this remains challenging. Here, we present a convenient approach for the synthesis of two irregular 3-O-sulfonated heparan sulfate octasaccharides, making use of a key disaccharide intermediate to acquire different building blocks for the oligosaccharide chain assembly. Despite substantial structural differences, the prepared 3-O-sulfonated sugars blocked viral infection in a dosage-dependent manner with remarkable similarity to one another.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Specific 3-O-sulfonated octasaccharides 1 and 2 and retro-synthetic design of the corresponding α-methylated glycosides 3 and 4.
Figure 2: Preparation of disaccharide building blocks 6, 7, 8, 14 and 15.
Figure 3: Preparation of heptasaccharide acceptor 33.
Figure 4: Synthesis of target octasaccharide 4.
Figure 5: Synthesis of target octasaccharide 3.
Figure 6: Inhibition of HSV-1 infection of Vero cells by compounds 3 and 4.

Similar content being viewed by others

References

  1. Hacker, U., Nybakken, K. & Perrimon, N. Heparan sulphate proteoglycans: the sweet side of development. Nat. Rev. Mol. Cell. Biol. 6, 530–541 (2005).

    Article  Google Scholar 

  2. Whitelock, J. M. & Iozzo, R. V. Heparan sulfate: a complex polymer charged with biological activity. Chem. Rev. 105, 2745–2764 (2005).

    Article  CAS  Google Scholar 

  3. Liu, H., Zhang, Z. & Linhardt, R. J. Lessons learned from the contamination of heparin. Nat. Prod. Rep. 26, 313–321 (2009).

    Article  CAS  Google Scholar 

  4. Esko, J. D. & Lindahl, U. Molecular diversity of heparan sulfate. J. Clin. Invest. 108, 169–173 (2001).

    Article  CAS  Google Scholar 

  5. Peterson, S., Frick, A. & Liu, J. Design of biologically active heparan sulfate and heparin using an enzyme-based approach. Nat. Prod. Rep. 26, 610–627 (2009).

    Article  CAS  Google Scholar 

  6. Bishop, J. R., Schuksz, M. & Esko, J. D. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446, 1030–1037 (2007).

    Article  CAS  Google Scholar 

  7. Spear, P. G. Herpes simplex virus: receptors and ligands for cell entry. Cell. Microbiol. 6, 401–410 (2004).

    Article  CAS  Google Scholar 

  8. Sedy, J. R., Spear, P. G. & Ware, C. F. Cross-regulation between herpes viruses and the TNF superfamily members. Nat. Rev. Immunol. 8, 861–873 (2008).

    Article  CAS  Google Scholar 

  9. Liu, J. & Thorp, S. C. Cell surface heparan sulfate and its roles in assisting viral infections. Med. Res. Rev. 22, 1–25 (2002).

    Article  Google Scholar 

  10. Shieh, M., WuDunn, D., Montgomery, R., Esko, J. & Spear, P. Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans. J. Cell Biol. 116, 1273–1281 (1992).

    Article  CAS  Google Scholar 

  11. Oh, M-J., Akhtar, J., Desai, P. & Shukla, D. A role for heparan sulfate in viral surfing. Biochem. Biophys. Res. Commun. 391, 176–181 (2010).

    Article  CAS  Google Scholar 

  12. Spear, P. G., Eisenberg, R. J. & Cohen, G. H. Three classes of cell surface receptors for alphaherpesvirus entry. Virology 275, 1–8 (2000).

    Article  CAS  Google Scholar 

  13. Shukla, D. et al. A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 99, 13–22 (1999).

    Article  CAS  Google Scholar 

  14. Akhtar, J. & Shukla, D. Viral entry mechanisms: cellular and viral mediators of herpes simplex virus entry. FEBS J. 276, 7228–7236 (2009).

    Article  CAS  Google Scholar 

  15. Campadelli-Fiume, G. et al. The multipartite system that mediates entry of herpes simplex virus into the cell. Rev. Med. Virol. 17, 313–326 (2007).

    Article  CAS  Google Scholar 

  16. Reske, A., Pollara, G., Krummenacher, C., Chain, B. M. & Katz, D. R. Understanding HSV-1 entry glycoproteins. Rev. Med. Virol. 17, 205–215 (2007).

    Article  CAS  Google Scholar 

  17. Liu, J. et al. Characterization of a heparan sulfate octasaccharide that binds to herpes simplex virus type 1 glycoprotein D. J. Biol. Chem. 277, 33456–33467 (2002).

    Article  CAS  Google Scholar 

  18. Copeland, R. et al. Using a 3-O-sulfated heparin octasaccharide to inhibit the entry of herpes simplex virus type 1. Biochemistry 47, 5774–5783 (2008).

    Article  CAS  Google Scholar 

  19. Petitou, M. & van Boeckel, C. A. A. A synthetic antithrombin III binding pentasaccharide is now a drug! What comes next? Angew. Chem. Int. Ed. 42, 3118–3133 (2004).

    Article  Google Scholar 

  20. de Paz, J. L. et al. The activation of fibroblast growth factors by heparin: synthesis, structure, and biological activity of heparin-like oligosaccharides. ChemBioChem 2, 673–685 (2001).

    Article  CAS  Google Scholar 

  21. Laremore, T. N., Zhang, F., Dordick, J. S., Liu, J. & Linhardt, R. J. Recent progress and applications in glycosaminoglycan and heparin research. Curr. Opin. Chem. Biol. 13, 633–640 (2009).

    Article  CAS  Google Scholar 

  22. Hung, S-C. et al. 1,6-anhydro-β-L-hexopyranoses as potent synthons in the synthesis of the disaccharide units of bleomycin A2 and heparin. J. Am. Chem. Soc. 123, 3153–3154 (2001).

    Article  CAS  Google Scholar 

  23. Lee, J-C. et al. From D-glucose to biologically potent L-hexose derivatives: synthesis of α-L-iduronidase fluorogenic detector and the disaccharide moieties of bleomycin A2 and heparan sulfate. Chem. Eur. J. 10, 399–415 (2004).

    Article  CAS  Google Scholar 

  24. Codée, J. D. C. et al. A modular strategy toward the synthesis of heparin-like oligosaccharides using monomeric building blocks in a sequential glycosylation strategy. J. Am. Chem. Soc. 127, 3767–3773 (2005).

    Article  Google Scholar 

  25. Noti, C., de Paz, J. L., Polito, L. & Seeberger, P. H. Preparation and use of microarrays containing synthetic heparin oligosaccharides for the rapid analysis of heparin–protein interactions. Chem. Eur. J. 12, 8664–8686 (2006).

    Article  CAS  Google Scholar 

  26. Baleux, F. et al. A synthetic CD4–heparan sulfate glycoconjugate inhibits CCR5 and CXCR4 HIV-1 attachment and entry. Nat. Chem. Biol. 5, 743–748 (2009).

    Article  CAS  Google Scholar 

  27. Arungundram, S. et al. Modular synthesis of heparan sulfate oligosaccharides for structure–activity relationship studies. J. Am. Chem. Soc. 131, 17394–17405 (2009).

    Article  CAS  Google Scholar 

  28. Lu, L-D. et al. Synthesis of 48 disaccharide building blocks for the assembly of a heparin and heparan sulfate oligosaccharide library. Org. Lett. 8, 5995–5998 (2006).

    Article  CAS  Google Scholar 

  29. Lohman, G. J. S. & Seeberger, P. H. A stereochemical surprise at the late stage of the synthesis of fully N-differentiated heparin oligosaccharides containing amino, acetamido, and N-sulfonate groups. J. Org. Chem. 69, 4081–4093 (2004).

    Article  CAS  Google Scholar 

  30. Wang, C-C. et al. Regioselective one-pot protection of carbohydrates. Nature 446, 896–899 (2007).

    Article  CAS  Google Scholar 

  31. Wang, C-C., Kulkarni, S. S., Lee, J-C., Luo, S-Y. & Hung, S-C. Regioselective one-pot protection of glucose. Nat. Protoc. 3, 97–113 (2008).

    Article  CAS  Google Scholar 

  32. Chang, K-L., Zulueta, M. M. L., Lu, X-A., Zhong, Y-Q. & Hung, S-C. Regioselective one-pot protection of D-glucosamine. J. Org. Chem. 75, 7424–7427 (2010).

    Article  CAS  Google Scholar 

  33. Lee, J-C., Lu, X-A., Kulkarni, S. S., Wen, Y-S. & Hung, S-C. Synthesis of heparin oligosaccharides. J. Am. Chem. Soc. 126, 476–477 (2004).

    Article  CAS  Google Scholar 

  34. Plante, O. J., Buchwald, S. L. & Seeberger, P. H. Halobenzyl ethers as protecting groups for organic synthesis. J. Am. Chem. Soc. 122, 7148–7149 (2000).

    Article  CAS  Google Scholar 

  35. Kulkarni, S. S. & Hung, S-C. Metal tifluoromethanesulfonates as versatile catalysts in carbohydrate synthesis. Lett. Org. Chem. 2, 670–677 (2005).

    Article  CAS  Google Scholar 

  36. van den Berg, R. J. B. H. N., Noort, D., van der Marel, G. A., van Boom, J. H., Benschop, H. P. Synthesis of pseudo-disaccharide analogues of Lipid A: haptens for the generation of antibodies with glycosidase activity towards Lipid A. J. Carbohydr. Chem. 21, 167–168 (2002).

    Article  CAS  Google Scholar 

  37. Warner, M. S. et al. A cell surface protein with herpesvirus entry activity (HveB) confers susceptibility to infection by mutants of herpes simplex virus type 1, herpes simplex virus type 2, and pseudorabies virus. Virology 246, 179–189 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Council (NSC 97-2113-M-001-033-MY3, NSC 98-2119-M-001-008-MY2) and Academia Sinica. The authors thank P.G. Spear for providing HSV-1 (KOS) tk12.

Author information

Authors and Affiliations

Authors

Contributions

S-C.H. conceived the idea of HS synthesis, supervised students to carry out the experiments, drew and summarized the figures, and finalized the preparation of the manuscript. Y-P.H. and S-Y.L. synthesized the irregular HS octasaccharides 3 and 4, respectively. C-Y.H. carried out the inhibition experiments of HSV-1 with Vero cells. M.M.L.Z. participated in the discussion and wrote the manuscript. J-Y.L. initiated the work on the preparation of the oligosaccharide skeleton. W.C. supervised C-Y.H. on the inhibition study of HSV-1 infection.

Corresponding author

Correspondence to Shang-Cheng Hung.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 9384 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, YP., Lin, SY., Huang, CY. et al. Synthesis of 3-O-sulfonated heparan sulfate octasaccharides that inhibit the herpes simplex virus type 1 host–cell interaction. Nature Chem 3, 557–563 (2011). https://doi.org/10.1038/nchem.1073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1073

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing